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Abstract 

Bacterial genomes exhibit widespread horizontal gene transfer, resulting in highly 
variable genome content that complicates the inference of genetic interactions. In 
this study, we develop a method for detecting coevolving genes from large datasets 
of bacterial genomes based on pairwise comparisons of closely related individuals, 
analogous to a pedigree study in eukaryotic populations. We apply our method to pairs 
of genes from the Staphylococcus aureus accessory genome of over 75,000 annotated 
gene families using a database of over 40,000 whole genomes. We find many pairs of 
genes that appear to be gained or lost in a coordinated manner, as well as pairs where 
the gain of one gene is associated with the loss of the other. These pairs form networks 
of rapidly coevolving genes, primarily consisting of genes involved in virulence, mecha-
nisms of horizontal gene transfer, and antibiotic resistance, particularly the SCCmec 
complex. While we focus on gene gain and loss, our method can also detect genes 
that tend to acquire substitutions in tandem, or genotype-phenotype or phenotype-
phenotype coevolution. Finally, we present the R package DeCoTUR  that allows for 
the computation of our method.

Keywords: Genomics, Genetic interaction, Horizontal gene transfer, Staphylococcus 
aureus, Software, Microbial genomics

Introduction
Interactions between genes are a major part of evolution, but they are fundamentally 
difficult to study due to the combinatorial explosion of the number of possible inter-
actions [1, 2]. In bacteria, widespread horizontal gene transfer creates a much wider 
range of potential genetic backgrounds and genetic interactions [3]. Detecting gene-gene 
interactions without performing large numbers of assays requires the development of 
computational techniques that can handle the necessary volume of genomic data to find 
signatures in natural genetic diversity.

Methods for finding interactions at the level of genes generally perform Genome-
Wide Association Studies (or GWAS) to detect relationships between genes and phe-
notypes. This approach has been widely used in human populations, and while there 
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have been successes (the first of which was [4]; see [5]), GWAS inference in humans 
is often complicated by the existence of population structure—systematic differences 
in allele frequencies among subgroups in a population [e.g. 6, 7]. This is even more of 
a problem in bacterial populations, which often have stronger population structure 
due to their limited and biased recombination [8–10]. Thus, it is usually insufficient 
to simply transfer existing association detection methods from humans to bacteria, 
and new methods must be developed that take into account the structure of bacterial 
populations.

There are several existing approaches to detect genotype-phenotype associations in 
bacteria, the earliest of which are reviewed in [8]. The software PLINK [11], which is fre-
quently used in human GWAS studies, has also been applied to bacterial datasets [12–
14]. Approaches developed specifically for bacteria include those based on regression 
[15–18] and those based on phylogenetic convergence [9]. Techniques that explicitly 
take phylogenetic information into account fare better in highly clonal bacterial systems 
[16, 18].

Methods that use phylogenetic convergence are based on homoplasic events on a phy-
logeny. The package hogwash [19] implements two methods based on ancestral state 
reconstruction: phyC (introduced by [20]) and a more stringent method that was intro-
duced by [21]. The package treeWAS [22] pairs ancestral state reconstruction with sim-
ulation given a homoplasy distribution to compute three different tests of association: 
one that only uses leaf data and is equivalent to the method proposed by [23], one that is 
equivalent to phyC [20], and one that is novel and takes into account co-occurance times 
along the tree. Finally, Scoary [24], uses the method of pairwise comparisons [25] to 
find the minimum number of necessary independent co-emergences of two genes given 
a phylogeny and evaluates association based on this number. These methods are gener-
ally computationally demanding, and indeed were left out of a recent simulation study 
comparing various bacterial GWAS techniques precisely for this reason [18].

Computational complexity is a problem for all GWAS-style methods when applied to 
gene-gene interactions, which are built for many-to-one association tests and not many-
to-many tests. While in principle all current published GWAS-style methods could be 
used to broadly detect gene-gene interactions (by treating the presence or absence of a 
gene as a “phenotype”), they are in general not built for comparing multiple sets of genes 
against each other simultaneously and running them for pairwise comparisons of large 
numbers of genes becomes prohibitively slow. Thus, it is useful to specifically design 
methods for detecting interactions between genes via co-occurrence. Pantagruel [26] 
estimates gene trees and evaluates the co-incidence of events on gene trees under a spe-
cies tree. CoPAP [27, 28] simulates gain and loss events for pairs of genes along a phy-
logeny under various coevolutionary models. [29] use a maximum likelihood method 
developed by [30] to identify genes that have related gain and loss patterns. Most of 
these approaches use specified evolutionary models, which can become unwieldy over 
large datasets as tree size grows. The recent method Coinfinder [31] avoids using a full 
phylogenetic simulation or likelihood analysis by computing the phylogenetic statistic of 
lineage independence D [32] along with a simple statistic of co-incidence to determine 
putative gene-gene interactions. Finally, methods originally designed to detect epista-
sis—such as superDAC [33] and SpydrPick [34]—can be adapted to apply to gene 
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gain and loss as well. As we demonstrate in this study, these relatively model-free meth-
ods have different strengths and weaknesses in different settings, and it is useful to have 
a method that has a tunable parameter that can be adjusted to work well across multiple 
different settings.

Here, we introduce a new method for finding associations between genes in bacterial 
populations, specifically tailored to accommodate datasets with greater than 1,000 sam-
ples, and with a parameter that can be tuned to accommodate many differently sized 
datasets, by sidestepping a full phylogenetic analysis entirely. This method, which we 
call DeCoTUR  (Detecting Coevolving Traits Using Relatives), is based on the idea that a 
strong signal of biological association can be inferred if closely related individuals differ 
in their gene presence-absence states in the same way. In our approach, we first identify 
pairs of closely related individuals. The number of these close pairs is the tunable param-
eter. We then find pairs of genes for which, when one gene is gained or lost between a 
pair of closely related individuals, the other gene is frequently gained or lost as well. We 
apply our method to the Staphopia database [35]—which contains over 40,000 publicly 
available Staphylococcus aureus genomes—to detect correlated gain and loss between 
pairs of accessory genes. The number of such coincident gain/loss events determines a 
gene pair’s “coevolution score”. We test for interactions by comparing this coevolution 
score to what would be expected if the two genes were gained and lost independently. 
With this method, we find interactions between genes involved in a wide variety of 
functions, including antibiotic resistance, virulence, pathogenicity, phage interactions, 
mobile genetic elements, and others. The majority of these interactions are positive 
associations, i.e., pairs of genes that are gained and lost together, rather than substitut-
ing for each other. We find many interactions between closely linked genes that are likely 
co-transferred, particularly among genes related to antibiotic resistance. We also find 
interactions between genes that are not closely linked, especially among genes related 
to virulence. The coevolution of these pairs is likely to involve multiple transfer events 
and be driven by epistasis (functional interactions between genes) or correlated selec-
tion across environments. Finally, we introduce the R package DeCoTUR  (https:// github. 
com/ weiss manlab/ decot ur) that allows the computation of our coevolution score.

Methods
Data

We downloaded all public samples from the Staphopia database [35], for a total of 42,949 
samples. We used the core genome of shared genes determined by [35] to compute 
nucleotide divergences between the samples and we removed 10,308 samples that were 
identical in core genome sequence and accessory genome composition to at least one 
other sample. We used each sample’s multi-locus sequence type (MLST, provided by 
Staphopia) and the publicly-available pubMLST database (https:// pubml st. org/ saure us/) 
to determine its clonal complex (CC). For a breakdown of sample size by clonal complex, 
see Additional file 1: Fig. S1 and Section A. We also computed coevolution scores among 
antibiotic resistance phenotypes across the whole database obtained from ARIBA pre-
dictions [36] in Staphopia.

https://github.com/weissmanlab/decotur
https://github.com/weissmanlab/decotur
https://pubmlst.org/saureus/
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Finding close pairs of individuals

We determined closely-related (i.e. “close”) pairs of samples based on the distribution 
of distances in a pairwise distance matrix—computed using Hamming distances on the 
concatenated core genome—of all considered samples. This procedure requires a choice 
of distance cutoff, with pairs of samples whose pairwise distance is below this cutoff are 
considered to be “close”. In principle, this cutoff can be tuned to whatever scale is of 
interest, or to match the number of close pairs to the available computational power. 
Note that as sample sizes increase, the computational expenditure of this procedure can 
be mitigated in two ways: first, pairwise distances need only be calculated between indi-
viduals that could potentially be closely related to each other, and second, a less direct 
approach such as using Mash distances [37] can be used.

We computed pairwise distances between all samples within each clonal complex 
(Additional file 1: Fig. S2, Section B). To choose a distance cutoff which would not dra-
matically overrepresent some clonal complexes and underrepresent others, we chose a 
distance cutoff of  5 ×  10−4 (Additional file 1: Fig. S3, Section C). For the three clonal 
complexes with > 1,000,000 close pairs below this cutoff (5, 8, and 22) we downsam-
pled close pairs to match the average representation of the other clonal complexes given 
this distance cutoff. We then randomly sampled 10,000 of the resulting close pairs to get 
to our final set of close pairs. The analysis in Section E demonstrates that the specific 
choice of cutoff does not dramatically affect the overall results.

Gene annotation, clustering, and filtering

To annotate the genomes, we processed contig sequence data from Staphopia with 
prokka [38]. We then used Panaroo [39] on a subsample of size 10,000 of these pro-
cessed samples for pangenome clustering, with the gene presence-absence output from 
Panaroo as our gene presence-absence matrix. Panaroo clusters genes into families 
while splitting up paralogs by default. We disabled the option to find genes missed by 
prokka for time purposes. We combined gene families that had the same names up to 
a permutation in order. For each analysis, we only include genes that have at least two 
of the less frequent state (presence or absence) in the set of samples used in close pairs. 
These are the only genes with sufficient presence-absence polymorphism to potentially 
show a signal of coevolution.

Computing the coevolution score

Here we will outline how we test for coevolution between a specific pair of genes, gene 1 
and gene 2. To compute the coevolution score, we test each pair of closely related indi-
viduals i and j for evidence of coevolution. Most pairs of close relatives will necessarily be 
uninformative: for each gene, they will either both have the gene or both lack it, simply 
by virtue of being closely related. But for genes that are frequently gained and lost, there 
will be some pairs of close relatives that differ in the focal genes, and these are the pairs 
that can contribute to the score. Let Pn,k be an indicator variable for the presence of gene 
n in individual k, e.g., P1,i = 1 if individual i has gene 1 and 0 otherwise. If one individual 
has both genes and the other individual has neither, i.e., (P1,i,P1,j ,P2,i,P2,j) = (1, 0, 1, 0) 
or (0, 1, 0, 1), then we add + 1 to the score representing a positive association between 
the genes. Conversely, if one individual has only one gene and the other individual has 
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only the other, i.e., (P1,i,P1,j ,P2,i,P2,j) = (1, 0, 0, 1) or (0, 1, 1, 0), then we add + 1 to the 
score representing a negative association between the genes. We compute two separate 
scores, one for each of these two types of associations. Figure 1 provides an example sit-
uation which illustrates how the score focuses on recent co-incident evolutionary events 
(represented by the red samples in Fig.  1), while omitting older evolutionary events. 
Additional file 1: Fig. S4 (Section D) displays the distribution of discordant close pairs 
for each gene. These discordances are approximately exponentially distributed with a 
mean of 108 discordances per 10,000 close pairs. Thus, the overall rate of gene gain/loss 
at the scale of these close pairs is about 1% per pair.

The phylogenies of clonal complexes in S. aureus often feature multiple clusters of 
extremely closely related individuals that form “bushes”—or in extreme cases, polyto-
mies—in which it is difficult to tell which samples are most closely related (see Addi-
tional file 1: Fig. S6, Section F), and for which the specific tree structure may be difficult 
to infer accurately. Rather than trying to resolve these bushes, we adjust the value of the 
contribution for each close pair based on the size of the bush it comes from. Specifically, 
we partition all the samples into groups where two samples are in the same group if they 
form a close pair. If pair k is in a group with nk total pairs, then we divide the contri-
bution of that pair to the score by nk . In other words, the maximum total contribution 
of each bush to the score is 1. This is a highly conservative estimate of the amount of 
coevolution in bushes; it treats a bush as if it were an unresolved polytomy and ignores 
any tree structure inside the bush that may otherwise indicate a coevolutionary signal. In 
Fig. 1B, there are three bushes, two of size 2 and one of size 4. Only the size 4 bush con-
tributes to the score, and the contribution to the score of that bush is 1/6, as one of the 
six close pairs in that bush (the red pair) contains a pattern that contributes to the score. 

Gene 1 Gene 2A Gene 1 Gene 2B

Fig. 1 Two examples of the coevolution score computation for a pair of genes (left and right trees in each 
panel). A an example with all disjoint close pairs. B An example with an unresolved polytomy “bush,” in which 
all individuals present are close pairs with each other. The vertical dashed lines indicate the distance cutoffs 
used to determine close pairs. Filled squares indicate presence of a gene, empty squares indicate its absence. 
Dashed boxes indicate individuals that are in close pairs with each other. In both A and B, there is exactly 
one close pair of individuals (in red) that is polymorphic for both genes, indicating recent gain/loss, so only 
that close pair contributes to the score. The genes differ in the same way (the top red individual has neither 
gene, the bottom red individual has both), so this contributes to the positive score for the gene pair. In A, the 
single close pair contributes a value of 1 to the positive score. In B, this close pair is part of a bush of 4

2
= 6 

close pairs, so it contributes only 1
6
 to the positive score. The more ancient event that produced the difference 

between the top clade (where both genes are present in all individuals) and the bottom clade (where both 
genes are mostly absent) does not contribute to the score. Note that our method does not actually use the 
trees, only which pairs of individuals are closely related
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Contrast this to the situation in Fig. 1A, in which the only bush that contributes to the 
score is of size 2, so its contribution is 1.

Because our method is based on genetic diversity, it necessarily has the most power 
to detect coevolution among genes that are at intermediate frequencies. But because 
we focus on recent/ongoing evolution, the power to detect coevolution does not just 
depend only on the frequency of a gene in the sample, but also on its distribution. For 
genes that are essentially exclusively clonally inherited and whose polymorphism corre-
sponds to a deep split in the phylogeny, we do not expect to find a signal, while we have 
the most power to detect coevolution among genes that are frequently lost or gained via 
horizontal gene transfer and widely distributed among clades.

Genes that are frequently gained and lost can purely by chance generate a nonzero 
score. To test for this, we found the total number of discordances between close pairs for 
each gene. We then parameterized a Poisson Binomial distribution for each gene pair as 
follows: each close pair is modeled as an independent draw from a Bernoulli distribu-
tion. This draw represents the event of a “double discordance,” where the close pair is 
discordant for both genes in the gene pair. Under the null assumption of independence 
between the two genes, the probability of this event is the product of the probability of 
the event of a single discordance in each gene. We assume that the probability of a single 
discordance for each gene is proportional to the relative core genome distance between 
the two samples in the close pair, normalized across the total pairwise core genome dis-
tance across all pairs. The proportionality constant is the total number of discordances 
we observe across all close pairs for that gene. Thus, the expected number of discord-
ances for each gene is equal to the observed number of discordances, and close pairs 
with larger pairwise distances are more likely to contain double discordances. We used 
a Bonferroni correction with α = 0.05 on the resulting p-values from this Poisson Bino-
mial distribution to determine statistical significance.

To construct interaction networks such as Figs. 2 and 4 , we chose a coevolution score 
threshold; if two genes have a score above this threshold, we drew a link between them 
with the weight being the score. These score thresholds were chosen primarily for visu-
alization purposes, but they were always chosen from the extreme high end of the score 
distribution.

Results
Gene‑gene interactions range from individual operons to complex webs

We consistently find some of the strongest signals of coevolution among genes related to 
resistance to antibiotics and metals; mobile genetic elements; and genes that influence 
virulence and toxicity, by e.g. producing a toxin, being involved in biofilm formation, 
or regulation. But the coevolution networks also include many genes whose functions 
do not obviously pertain to any of the aforementioned functions. Figure 2 provides an 
example of such an interaction network obtained from a full-dataset analysis, using only 
the top 77 significant scores that did not include unannotated genes.

There are eight total clusters of interactions in Fig. 2. The largest contains a non-SCC-
mec operon that confers beta-lactam resistance (blaZ, blaI, and blaR1), genes involved 
in resistance to the presence of cadmium (cadA, cadC)—reflecting a known plasmid 
interaction [40]—and copper (copB and mco), and genes involved in plasmid replication 
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(repD, repE, repN, and pre). Another cluster primarily contains genes involved in the 
SCCmec cassette (pbp (mecA), mecR1, paaZ (maoC), and upgQ). Finally, there are six 
smaller clusters that contain a wide variety of virulence-related genes, including one pair 
involving an aminoglycoside resistance gene (aphA). These interactions paint a picture 
of recent genetic coevolution in S. aureus that focuses on host-pathogen interaction in 
all of its many facets.

Most strong interactions are among physically linked genes, but many strong interactions 

are not

Despite frequent gain and loss among the accessory genomes of S. aureus, we can com-
pute the effect of physical linkage between genes using a pangenome graph from Pan-
aroo [39]. This and other pangenome graph methods produce a network where each 
node is a homologous gene cluster and each edge represents at least one genome in 
which an element of the two gene clusters is adjacent on a contig. For our subsample 
of size 10,000, we computed the pangenome graph using Panaroo, and then used the 
shortest-path graph distance to quantify the amount of physical linkage. Figure 3 plots 
our coevolution score against this graph distance. Additional file 1: Fig. S7 (Section G) 
plots the overall distribution of scores, without pangenome graph distance.

There are four notable features of Fig. 3. First, the highest scores are restricted to graph 
distances that are under 30. Second, beyond graph distance 30, there appears to be little 

Fig. 2 Gene-gene coevolution network for the top 77 significant gene pairs in the full dataset, with nodes 
colored by gene function, edge color indicating the strength of the inferred interaction, and edge type 
indicating the polarity of the interaction. A small handful of kinds of genes that are all frequently horizontally 
transferred—primarily relating to resistance, virulence, or gene transfer itself—tend to dominate the 
interaction network. The cluster involving bbp, clf, and sdr genes likely is a result of a limitation of automated 
annotation software, which appears in this case to have given different names to different versions of the 
same gene families. Thus, these interactions are negative because they represent alternate annotations
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effect of graph distance on the maximum score. Third, there are still reasonably high 
scores beyond graph distance 30. Finally, fourth, there appears to be little effect of graph 
distance on negative interactions. The vast majority of interactions in Fig. 2 are in the 
high-linkage, orange regime in Fig. 3.

A network of low-linkage, high score interactions is presented in Fig. 4. In this case, 
low-linkage is defined as genes that are separated by a minimum of 30 genes in every 
sample genome. Thus, these genes are not found close together in the genome. Unlike 
in Fig. 2 (which represents the strongest overall interactions and almost every interac-
tion is between genes that are separated by less than 30 genes in the pangenome graph) a 
substantial fraction of the interactions in Fig. 4—between genes that are not found close 
together— are dissociative. The structure of the graph in Fig. 4 is of a “hub-and-spoke” 
network, where most genes are connected by “spokes” to only a few central “hub” genes. 
Interestingly, two of the three genes that form the main “hubs” of this hub-and-spoke 
network (aphA and wecD) have a pangenome graph distance of 1, which means that they 
occur in at least one sample adjacent to each other. By definition, the interactions pre-
sent in the network in Fig. 4 must occur when aphA and wecD are not adjacent. Thus, 
aphA and wecD must associate with a wide variety of genes, sometimes including each 
other and sometimes not. While aphA and wecD interact with genes of many types, the 
clumping factor clfB forms a hub that primarily involves other virulence genes, suggest-
ing that clfB warrants further study in its relationship to antibiotic resistance and other 
forms of virulence.

Fig. 3 The strongest interactions are positive and occur between genes that are physically close together. 
However, strong interactions still occur between genes that are far apart. The horizontal axis is the 
shortest-path graph distance between a pair of genes in a pangenome graph, and the vertical axis is the 
coevolution score between those genes. The blue points indicate pairs that have score > 25 and a graph 
distance > 30 (the vertical dotted line), and the orange points indicate pairs that have score > 60 and graph 
distance < 30. All points with scores less than 15 were removed
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Figure 5 describes the distribution of types of genes found in the orange (high-linkage, 
high-score) and blue (low-linkage, high-score) regions of Fig. 3. The high-linkage, high-
score interactions involve more SCCmec, metal resistance, and mobile genetic element 
genes, as well as diverse array of antibiotic resistance genes. By contrast, the low-link-
age, high-score interactions involve mostly genes related to virulence and pathogenicity. 
Thus, we see a pattern where virulence evolution is much more pleiotropic and able to 
reach beyond linkage restrictions. In contrast, antibiotic resistance is more restricted to 
being carried around in groups by mobile genetic elements.

The fact that we see less effect of linkage on the negative scores in Fig. 3 suggests a 
possible reason for the bias towards positive scores we detect: there is a specific mecha-
nism for genes to be co-inherited or co-lost (i.e. linkage) which does not exist for genes 
to be inherited alternately.

Antibiotic resistance phenotypes fall into two sets of interactions

Our coevolution score is not restricted to gene presence/absence and can be applied 
to any binary trait. We initially applied the score to SNPs, but found that accessory 
genes had more interesting evolutionary patterns in this dataset. We can also apply our 
method to binary phenotypes, such as the presence or absence of antibiotic resistance. 
Staphopia predicts antibiotic resistance phenotypes using ARIBA [36]. For each sample 
in the full-dataset analysis, we computed coevolution scores for these predicted antibi-
otic resistance phenotypes. Because we did not need to annotate genes for this analysis, 
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we were able to use the entirety of the 32,641 non-redundant samples in the dataset. 
Figure 6 displays a heatmap of the significant interactions and significant pairwise cor-
relations for these phenotypes. Note that the coevolution scores are scaled so that the 
highest magnitude is one and the lowest magnitude is zero.

There is a strong positive interaction cluster between both beta-lactam resistance phe-
notypes, MLS, aminoglycoside, trimethoprim, tetracycline, and phenicol resistance. The 
two strongest interactions are between aminoglycoside and MLS resistance and between 
SCCmec and non-SCCmec beta-lactam resistance. Fosfomycin resistance appears to 
strongly negatively interact with the other resistances. Finally, the remaining resistance 
phenotypes form a peripheral, weakly interacting group. These phenotypes are also in 
general much rarer than those in the beta-lactam interaction group, so their signal is 
limited.

The high-scoring group also has high correlation, but fosfomycin resistance has a clear 
negative signal with the coevolution score and no clear signal with correlation. Five of 
the peripheral resistance phenotypes are strongly correlated with each other, but have 
very little signal with the coevolution score.

Comparison with other methods

In this section, we compare DeCoTUR  to two other existing methods—SpydrPick [34] 
and Coinfinder [31]—on datasets of 100, 500, 1000, and 5000 samples. The 5000 sam-
ple dataset was randomly subsampled from the 10000 samples used for the full data-
set analysis. The subsequent samples are nested subsets of the 5000-sample dataset. We 
also fixed the number of genes in each sample by selecting intermediate-frequency genes 
symmetrically by rank around the median frequency gene to get 1000, 3000, 5000, and 
10000 genes for each sample size. The Panaroo implementation of SpydrPick can be 
run with or without the ARACNE analysis that is the signature of SpydrPick. We show 
results from both options. To get full results, Coinfinder must be run twice: once for 
association and once for dissociation. Our runtimes add the two times up. There were a 
number of choices we made for using DeCoTUR  in this comparison. First, we ran DeCo-
TUR  for three different numbers of close pairs: 100, 500, and 1000. We also only com-
puted significance for the top 10% of scores. Finally, we used block sizes of 100 for the 
score computation and 1000 for the significance tests. These choices were not optimized 
for any particular outcome.
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Figure 7 provides the runtime results for each of these methods on each of these data-
sets, when possible. The machine used in this comparison had 12 cores, an Intel Core 
i7-8700 CPU, and 64 GB of RAM and ran Ubuntu and Windows. Scripts for running 
each of these packages are provided in the supplementary material. DeCoTUR  has the 
benefit of being relatively unaffected by sample size (by design), whereas Coinfinder 
has the benefit of accommodating large numbers of genes relatively efficiently. Spy-
drPick without ARACNE is the fastest method overall, and SpydrPick with ARACNE 
is comparable to DeCoTUR . Using different numbers of close pairs, it is possible for 
DeCoTUR  to span the range of runtimes from SpydrPick with no ARACNE to Coin-
finder. Additional file  1: Fig.  S5 demonstrates that the coevolution score does not 
greatly depend on the number of close pairs used. Users can therefore choose the largest 
number of close pairs that accommodates their computational resources and their bio-
logical question.

Figure 8 shows how the scores found by SpydrPick (without ARACNE) and Coin-
finder compare to those found by DeCoTUR  for 500 samples, 1000 genes, and 500 close 
pairs. All three methods are generally positively correlated with each other. The rela-
tionship between SpydrPick and DeCoTUR  is less strong (Pearson correlation 0.77) 
than that between Coinfinder and DeCoTUR  (Pearson correlation 0.95) (we note that 
these relationships are not obviously linear so correlation coefficients are only presented 
here to quantify the clearly-seen visual differences between the two.). This difference is 
likely due to the fact that non-spurious results were not removed from the SpydrPick 
results because the ARACNE step removed all interactions, and so we did not include 
that step in this analysis.
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Discussion
We have presented a new method for detecting interactions between genes in large 
bacterial datasets, using pairwise divergence in the core genome to find closely-related 
pairs of organisms and finding pairs of genes that differ within the same close pairs. We 
applied this method to Staphopia, a dataset of more than 40,000 genomes of Staphy-
lococcus aureus, to find a network of accessory genes that are being gained and lost 
together.

The gene interactions that our method detects present an interconnected picture of 
various ways in which S.  aureus interacts with its environment. Along with antibiotic 
resistance genes, we found substantial interaction with genes that promote virulence and 
pathogenicity—ranging from host colonization to toxin production—as well as genes 
that code for resistance to metals and genes that are involved in plasmid replication, bac-
teriocins, and DNA metabolism. Our results suggest that recent gene-gene coevolution 
in S. aureus is a complex, interconnected web in which horizontal gene transfer allows 
lineages to rapidly acquire a suite of traits involved in pathogenicity, including antibiotic 
resistance, host colonization, and competition with other bacteria.

We found that most interactions between pairs of genes are positive, with the presence 
of one gene correlated with the presence of the other, rather than anti-correlated. This is 
similar to the result found by [41] using a different method (Coinfinder) in a different 
system (E. coli), suggesting that it may be a general pattern. Both of these results support 
the idea that HGT-based evolution is driven more by the collection of genes that work 
well together as opposed to the sorting of a diverse set of genes that are interchangeable. 
Of course, selection may favor linking such sets of genes into operons, which will then 
facilitate their co-transfer and strengthen the pattern of positive associations.

Using distance in a pangenome graph as a proxy for physical linkage, we found that the 
strongest interactions were found with the most strongly-linked genes (i.e. pangenome 
graph distance less than 30). These strong interactions were almost all positive, sug-
gesting that the positive bias in the strongest scores is indeed driven by the transfer of 
operons of genes. Negative interactions were much more prevalent as a fraction of total 
strong interactions for pairs of genes that were further than 30 genes apart in the pange-
nome graph, suggesting that these interactions are driven more by pleiotropy than by 
co-transfer events. High-linkage interactions were enriched in metal resistance, mobile 
genetic element, and slightly in antibiotic resistance genes than low-linkage interactions. 
By contrast, low-linkage interactions were enriched in virulence-related genes. These 
patterns suggest that interactions between resistance genes are driven by direct HGT, 
whereas interactions between virulence genes are driven by epistasis and pleiotropy.

One of the more unexpected results we found was cadmium resistance’s frequent 
strong coevolution with antibiotic resistance. It is not obvious why these genes should 
have such a strong signal across clonal complexes, especially considering that there are 
other genes that are also frequently found in SCCmec that show much weaker interac-
tion. One potential explanation could involve a linkage of cadmium resistance to sur-
vival in wastewater as a transmission mechanism [42].

Interactions between antibiotic resistance phenotypes can be divided into two groups: 
a major group with common resistance phenotypes centered around beta-lactam resist-
ance, and a minor group with rare resistance phenotypes. Although our overall results 
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suggest that antibiotic resistance is transmitted via operons in general, some phenotypes 
show unexpected patterns (such as fosfomycin, which has a negative coevolution score 
with the other resistance phenotypes in the major group).

The Staphopia database is compiled from public data; sampling biases in these data 
will therefore be preserved in Staphopia. One major such bias is the overabundance of 
MRSA (methicillin-resistant) vs. MSSA (methicillin-sensitive) strains due to the impor-
tant clinical relevance of certain MRSA strains. This bias could potentially inflate the 
importance of the SCCmec cassette. By downweighting bushes by their size, we avoid 
the score being dominated by a recent well-sampled branch of the tree. An additional 
possible solution to this bias would be to downsample to reduce MRSA frequency within 
the sample. Ultimately, more sampling of MSSA strains is necessary to properly under-
stand S. aureus evolution. In addition, there is a tradeoff inherent in the Staphopia data-
base where shotgun-assembled genomes are used, resulting in a decrease in the quality 
of automated gene calling, annotation, and linkage estimate. Thus, even though we use 
automated annotation via Panaroo, there are still limitations to this method. In the 
future, large amounts of complete genomes—such as from Oxford nanopore or PacBio 
sequencing—may improve the picture.

The ability to discover and investigate interactions between genes in bacteria will only 
increase with the increase in the accessibility of large amounts of data provided by data-
bases such as Staphopia. With more data, we may be able to discover more interactions 
with smaller signals, or interactions that are strong but rare. We constructed our method 
specifically to be able to keep up with this progress. Methods such as ours, coupled with 
databases such as Staphopia, will allow both the study of broad-scale patterns of bacte-
rial evolution as well as providing more focused results for future study.
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