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Abstract
The act of deliberately removing a body part–called autotomy–is a behavior that has appeared frequently across the tree of 
life. Though there are many possible functions for this behavior, it is often thought of first as a mechanism to escape preda-
tion. In a predator–prey interaction, autotomy can therefore confer significant benefits to the prey–particularly, the benefit 
of not being eaten–but it may also incur significant costs, including the energy expenditure required to regrow the body part 
and any additional consequences of losing the body part in the first place. In addition, the presence of autotomy may affect 
how predators choose to approach prey. Here, we put these costs and benefits into a game theory framework and analyze the 
evolutionary, ecological, and eco-evolutionary dynamics of autotomy, considering both predator and prey strategies. We also 
apply our model to an empirical example using existing data from porcelain crabs. We find a wide range of effects of autotomy 
on the ecological and evolutionary dynamics of the predators and prey, including the possibility that the prey become locked 
into performing autotomy by the predators and the possibility that autotomy can rescue predator–prey coexistence.

Keywords Autotomy · Predator–prey interactions · Game theory · Evolutionary dynamics · Ecological dynamics · Eco-
evolutionary dynamics

Introduction

Prey employ a wide variety of strategies to avoid or escape 
predators (Caro 2005; Ruxton et al. 2019), including camou-
flage, warning coloration (aposematism), mimicry, attempt-
ing to startle the predator, toxicity and other secondary 
defense mechanisms, and attempting to deflect the predation. 
These traits are generally considered to be a product of coev-
olution between the predator and the prey; these coevolution-
ary processes often result in an “arms race” between predator 
and prey (Cott 1940; Dawkins and Krebs 1979), but this is 
not the only possible outcome (Abrams 1986; Vermeij 1994).

The prey behavior of autotomy—the self-controlled loss 
of a body part at a predetermined breakage location—is an 
example of a prey behavior that is used to deflect predation. 
Autotomy is widespread throughout the tree of life (Emberts 
et al. 2019) and is therefore thought to have many independent 

origins (McVean 1975); there may be many different ways 
for which autotomy can be advantageous. Autotomy was 
originally conceived of as a mechanism of predator escape 
(Fredericq 1883), but several other potential benefits of the 
behavior have been discovered (Maginnis 2006; Emberts 
et  al.  2019), including getting rid of injured body parts 
(Emberts et al. 2017), escape from non-predatory entrap- 
ment (e.g., (Hodgkin et al. 2014)), and as a method of intra-
sexual competition (e.g., (Uhl et al. 2010)). Autotomy also 
comes with serious costs to the individual (Maginnis 2006; 
Fleming et al. 2007; Emberts et al. 2019), including decreases 
in locomotive ability (e.g., (Martin and Avery 1998)), disad-
vantages in sexual selection (e.g., (Smith 1992)), energetic 
costs of regenerating the lost part (Maginnis 2006), and, ironi-
cally, decreased ability to escape from predators in the future 
(e.g., (Downes and Shine 2001)). The extreme nature of costs 
and benefits in such a dramatic behavioral trait warrants a 
thorough analysis of the conditions under which autotomy 
would be evolutionarily favorable.

Previous theoretical work on the ecology and evolution of 
autotomy includes several results in Optimal Escape Theory 
(Ydenberg and Dill 1986; Cooper Jr and Frederick 2007), 
which considers the problem of the Flight Initiation Dis-
tance, the distance a prey should start to try to escape the 
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predator. Cooper Jr (1998) considered conditions that would 
favor anticipatory or reactive autotomy (i.e., prior to or after 
the predator approaches). Cooper Jr and Frederick (2010) 
incorporated autotomy into an optimal escape model, con-
cluding that the effects of autotomy on flight initiation dis-
tance are complex. Recently, Emberts et al. (2019) adapted 
the theory of Ydenberg and Dill (1986) to the problem of 
autotomy in a verbal economic model.

Outside of the Optimal Escape Theory framework, 
Cooper Jr and Vitt (1991) considered the evolution of con-
spicuousness in the parts of the body used for autotomy. 
Harris (1989) analyzed two Lotka–Volterra models involv-
ing autotomy (or “nonlethal injury”). The first divided the 
prey population into injured and uninjured portions, with 
the injury inflicted by a predator who consumes only part 
of the prey and whose existence depend entirely on this 
prey consumption. The second model modified the first by 
instead making the predator population size constant and 
thus unaffected by the prey consumption. In the first model, 
Harris (1989) concluded that for predators to survive, the 
damaged prey must have a higher death rate than reproduc-
tive rate. The second model had no steady-state that includes 
both predators and prey. As a building block within a larger 
conceptual framework of decoys in predator–prey interac-
tions, Wilkinson (2003) added more realistic assumptions to 
the model of Harris (1989) and found that the presence of 
autotomy can dampen otherwise extreme oscillations in the 
population sizes of predators and prey.

Here, we analyze a game-theoretical model of the coevo-
lution of autotomy in prey and prey choice in a predator, 
focusing on autotomy as a predator-escape strategy. We 
determine the conditions under which autotomy is evolution-
arily favorable under this model. We also extend our model 
to incorporate ecological and eco-evolutionary dynamics 
and demonstrate the wide-ranging, complex effects of autot-
omy on these dynamics. Finally, we consider the connection 
of our results to empirically observed autotomy with existing 
data from porcelain crabs.

Model

We start by formulating a game-theoretical model for a sin-
gle predator–prey interaction. The game has two players: 
one predator and one prey. The predator can have one of 
two strategies: Approach ( � ) or Avoid ( � ) the prey (with 
the assumption that under the Avoid strategy, the predator 
instead chooses to approach a different type of prey from 
its pool of potential prey). The prey can have one of two 
strategies: Autotomy (A) or No autotomy (N). When it is 
potentially ambiguous, we refer to the potentially autoto-
mizing prey in question as the “focal” prey, and other prey 

as “alternative” prey. Note that alternative prey do not play 
this game.

If the predator avoids the focal prey ( � ), their payoff is 
completely determined by the quality of their alternative 
pool of potential prey, summarized by the quantity v.

If the predator approaches the focal prey ( � ), then their 
payoff is driven by the probability of killing the prey given 
the encounter. If k is the probability of killing the prey, 
r is the fraction by which this probability is reduced due 
to the autotomy strategy, p is the payoff achieved by eat-
ing the whole prey, and f is the fraction of the full payoff 
achieved by eating only the lost part, then the payoff of 
the predator is kp if the prey does not autotomize (N) and 
rkp + (1 − rk)(fp) = p[rk + (1 − rk)f ] if the prey autotomizes 
(A). We will generally assume that r < 1 , that is, autotomy 
has some effect on the probability of escaping the predator.

For the prey, we can scale the payoffs to be between 0 
(death) and 1 (successful escape without incurring any costs 
due to autotomy). If the prey does not autotomize (N), then 
the probability of dying (and achieving payoff 0) when a 
predator approaches ( � ) is k, and the probability of surviv-
ing (and therefore the payoff) is 1 − k . When a predator does 
not approach ( � ), the probability of surviving (and therefore 
the payoff) is 1.

If the prey autotomizes (A), and the predator approaches 
( � ), then the probability of survival is 1 − rk , and the payoff 
that the prey gets for surviving is decremented by c, the 
cost of the autotomy. This cost could be, for instance, the 
metabolic cost of maintaining the regenerative system, or 
a consequence of the post-autotomy effects of autotomiz-
ing individuals. The payoff of autotomizing (A) is therefore 
(1 − rk)(1 − c) . If, on the other hand, the predator does not 
approach ( � ), then the probability of survival is 1, but the 
prey, having autotomized, still incurs the autotomy cost c. 
Note that a prey autotomizing against a predator that does 
not approach makes no practical sense in the context of pred-
ator escape (though there are other uses of autotomy that 
do not involve predator interaction). Hence, the payoff of 
autotomizing (A) against an avoiding predator ( � ) is always 
strictly less than the payoff for not autotomizing (N) against 
an avoiding predator.

Table 1 describes the parameters and variables for this 
model, and Table 2 displays the payoff matrix for this game.

Results

Game theory analysis

We first analyze our autotomy game using the tools of game 
theory. It is useful to define the following composite quanti-
ties of our parameters:
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K summarizes the effect of the escape aspect of autotomy 
on the predator with regards to the focal prey (i.e., a larger 
K means the predator is more affected by the escape aspect 
of autotomy). K also summarizes the overall intensity of 
the effect of the escape aspect of autotomy on the prey. V 
summarizes the effect that the escape aspect of autotomy 
has on the predator with regards to the alternative prey. The 
quantities K and V allow us to separate the escape aspects of 
autotomy from the prey costs (c) and the predator benefits 
(f). Figure 1 plots K and V (Eq. 1) for a range of parameter 
values.

For the predator, approaching ( � ) beats avoiding ( � ) 
when played against non-autotomizing focal prey (N) if 
non-autotomizing focal prey are better than alternative prey 

(1)
K =

k − rk

1 − rk
=

(1 − r)k

1 − rk

V =

v

p
− rk

1 − rk
.

( kp > v ), and when played against autotomizing focal prey 
(A) if the autotomy benefit is greater than the benefit gained 
from pursuing alternative prey ( f > V  ). For notational con-
sistency, we note that kp > v is equivalent to K > V  , so long 
as rk < 1.

For the prey, autotomy (A) beats no autotomy (N) when 
played against approaching predators ( � ) if the autotomy 
cost is less than the escape benefit ( c < K ). As discussed 
previously, autotomy (A) can never beat no-autotomy (N) 
when played against avoiding predators ( �).

The effect of combining each of these conditions is 
described in Fig. 2, which presents the expected equilib-
rium evolutionary outcomes of this game. In general, autot-
omy is only such an outcome when costs to prey are low 
( c < K ) and benefits to predators are high enough to warrant 
approach ( f > V).

The region in Fig.  2 with two possible equilibria 
( c < K < V < f  ) occurs when it is advantageous for preda-
tors to approach ( � ) when the prey autotomize (A) but not 

Table 1  Description of 
parameters and variables for the 
game-theoretical (Table 2 and 
Eq. 4) and ecological (Eq. 6) 
models

Parameter Description Range

v Predator payoff for pursuing alternative prey [0,∞)

p Predator payoff for killing focal prey [0,∞)

c Cost of autotomy for focal prey [0, 1]
k Probability of predator killing focal prey with no autotomy [0, 1]
r Reduction in kill probability due to autotomy [0, 1]
f Fraction of predator payoff for consuming just an autotomized part [0, 1]
� Effect of a single focal prey kill on predator growth rate [0,∞)

� Predator death rate [0,∞)

� Focal prey growth rate [0,∞)

� Predation rate [0,∞)

w Frequency of avoiding strategy in predator ( �) [0, 1]
x Frequency of approaching strategy in predator ( �) [0, 1]
y Frequency of non-autotomy strategy in focal prey (N) [0, 1]
z Frequency of autotomy strategy in prey (A) [0, 1]
p� Population density of avoiding predators ( �) [0,∞)

p� Population density of approaching predators ( �) [0,∞)

pA Population density of autotomizing prey relative to carrying capacity (A) [0, 1 − pN ]

pN Population density of non-autotomizing prey relative to carrying capacity (N) [0, 1 − pA]

P Total predator population density [0,∞)

n Total prey population density relative to carrying capacity [0, 1]

Table 2  The payoff matrix for 
the predator–prey game, with 
predator payoffs listed on top
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when prey do not autotomize (N), and it is advantageous 
for prey to autotomize (A) upon predator approach ( � ) but 
not upon predator avoidance ( � ). Thus, the best response for 
each player is different based on what the other player plays. 
For instance, if all prey are non-autotomizing, then the pred-
ator should approach alternative prey instead of the focal 
prey, and if all prey autotomize, then the autotomy benefit 
is sufficient that predators should approach the focal prey.

The cyclic region in Fig. 2 ( c < K , f < V < K ) occurs 
when it is advantageous for predators to approach ( � ) non-
autotomizing prey (N) but not autotomizing prey (A), and 
it is advantageous for prey to autotomize (A) upon pred-
ator approach ( � ) but not upon predator avoidance ( � ). 
Thus, assuming we start with avoiding predators and non-
autotomizing prey ( �N  ), we would subsequently expect 
predators to approach the non-autotomizing prey ( �N  ), 
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Fig. 1  (a) The quantity K increases with increasing kill probability 
(k) and increasing effectiveness of autotomy ( 1 − r ). K summarizes 
the effect of the escape aspect of autotomy on the predator, as well as 
the intensity of the effect of autotomy on the prey. (b) If alternative 
prey is better ( v

p
> 1 ), then the quantity V increases with increasing 

kill probability (k) and decreasing effectiveness of autotomy ( 1 − r ). 

If alternative prey is worse ( v
p
< 1 ), then V instead decreases with 

increasing k and decreasing 1 − r . For k = 1 and r = 1 in (a), the value 
of K is 0. If v

p
= 1 in (b), then V = 1 for all r and k. For k = 1 in (B), 

the magnitude of V grows without bound for decreasing 1 − r and was 
truncated for this figure

Fig. 2  Expected outcomes 
(Nash equilibria) for the autot-
omy game. � N = No predation, 
no autotomy. � N = Predation, 
no autotomy. � A = No preda-
tion, autotomy. � A = Predation, 
autotomy. The cycle is � N → � N 
→ � A → � A → �N
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which would incentivize prey to autotomize ( �A ), which 
would incentivize predators to avoid the focal prey ( �A ), 
which would incentivize prey to stop autotomizing ( �N  ), 
completing the cycle.

Until now, we have only considered fixed, determin-
istic strategies, but it is possible for predators and prey 
to employ stochastic, mixed strategies as well. Let w be 
the probability of predator avoidance ( � ), x be the prob-
ability of predator approach ( � ), y be the probability of 
prey not autotomizing (N), and z be the probability of prey 
autotomizing (A). We will use the substitutions w = 1 − x 
and y = 1 − z in order to focus our attention on the prob-
abilities of the two “interesting” strategies, approach ( � ) 
and autotomy (A).

The mixed strategy solution for this system is

The mixed strategy (x̂, ẑ) only exists when either � A and � N 
are both expected equilibrium outcomes or when the system 
is expected to cycle.

Figure 3 explores how the parameters affect this mixed 
strategy. The frequency of approach ( ̂x , Eq. 2) increases 
as parameters change in such a way that K decreases or c 
increases; these situations all discourage autotomy and so 
predators must approach more frequently to get the same 
benefits. The frequency of autotomy ( ̂z , Eq. 3) increases 
when predators are increasingly encouraged to approach 

(2)x̂ =
c

k[1 − (1 − c)r]

(3)ẑ =
V − K

f − K
.

the focal prey (through low V and increasing f) and when 
predators would be otherwise encouraged to avoid the focal 
prey (through high V and decreasing f).

Evolutionary dynamics

To analyze the evolutionary dynamics of the autotomy game, 
we study the replicator game dynamics (Hofbauer and Sig-
mund 2003; Cressman and Tao 2014) of the four strategies, 
using the same variables w, x, y, and z that we used to com-
pute the mixed strategy solution. We again use the substitu-
tion w = 1 − x and y = 1 − z . The replicator equations for 
our model are

The equilibria are (0, 0), (0, 1), (1, 0), (1, 1), and (x̂, ẑ) , 
where

Note that x̂ and ẑ also describe the mixed-strategy equilib-
rium, which is a general property of replicator game dynam-
ics (Hofbauer and Sigmund 2003; Cressman and Tao 2014).

Details of the stability analysis of Eq. 4 are presented in 
Appendix B. Table 3 presents stability conditions for each of 
the equilibria. These stability conditions map directly onto the 

(4)

dx

dt
= x(1 − x)p(1 − rk)[z(f − K) − (V − K)]

dz

dt
= z(1 − z)[xk[1 − (1 − c)r] − c].

(5)
x̂ =

c

k[1 − (1 − c)r]

ẑ =
V − K

f − K
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Fig. 3  (a) Approach frequency x̂ (Eq.  2) increases monotonically 
with decreasing autotomy effectiveness 1 − r and kill probability 
k, both situations that decrease K, requiring predators to approach 
more frequently to get the same payoff. The dashed line indicates the 
boundary k = c

1−r+rc
 , where c = 0.05 in this case. Beyond this bound-

ary, the mixed strategy equilibrium does not exist. (b) Autotomy fre-

quency ẑ (Eq.  3) increases as V goes from K ( K = 0.5 in this case) 
to f. ẑ also increases with increasing autotomy fraction f if V < K 
(that is, when predators are encouraged to approach the focal prey, 
thus putting more emphasis on escape) and decreases otherwise. The 
dashed line indicates the boundary f = V  . Beyond this boundary, the 
mixed strategy equilibrium does not exist



 Theoretical Ecology

1 3

game-theoretical conditions in Fig. 2, where the cycle occurs 
when the interior equilibrium is a center, the bistable �A/� N 
state occurs when the interior equilibrium is a saddle point, � A is 
an equilibrium when (1, 1) is stable, � N is an equilibrium when 
(1, 0) is stable, � A is never an equilibrium, and � N is an equilib-
rium when (0, 0) is stable. This mapping is also a general prop-
erty of replicator game dynamics (Hofbauer and Sigmund 2003; 
Cressman and Tao 2014).

Note that for the sake of conciseness we will refer to 
unstable nodes as “unstable” and saddle points—which 
are also technically unstable—as simply “saddle points.”

We provide these replicator dynamics results primarily to 
demonstrate the link between our game theory model and the 
evolutionary dynamics that we combine with an ecological 
model in following sections. For general understanding of the 
evolutionary outcomes of this game, however, Fig. 2 is sufficient.

Figure 4 displays phase portraits for each parameter 
region in Fig. 2. We have labeled Fig. 4 so that the pan-
els correspond to regions in Fig. 2, with the exception that 
the c > K region in Fig. 4 is now also split up into f < V  
and f > V  parts to demonstrate that there are slightly dif-
ferent transient dynamics for these two regimes that do not 
appear in the game theory model because that model does 
not address transient dynamics. Parameters used in Fig. 4 
are listed in Table 4. The fact that (1, 1) is either a saddle 
point or an unstable equilibrium only makes a difference 
with respect to the dynamics in these cases; in the former 
case, the population will quickly move toward the (0, 0) sta-
ble equilibrium, but in the latter case the population will 
spend a significant amount of time with a higher frequency 
of approach (x) due to the increased (if temporary) benefit 
of autotomy on predators.

Ecological dynamics

In the context of this analysis, autotomy is an ecological 
interaction; our game theory model is therefore missing 
this fundamental aspect of the process. As a result, we next 
consider a purely ecological predator–prey model. Because 
predators that avoid the focal prey ( � ) do not ecologically 
interact either with the focal prey or with the approaching 
predators ( � ), they play no part in the purely ecological 
model. We can formulate a modified version of the standard 
Lotka–Volterra system (Hofbauer and Sigmund 1998) (with 
prey carrying capacity set to 1) that tracks the remaining 
three strategy population sizes ( p� , pA , and pN for approach-
ing predators, autotomizing prey, and non-autotomizing 
prey, respectively) as follows:

where the parameters �k , � , � , and �k correspond to the 
standard Lotka–Volterra growth and death rates for preda-
tors and prey, respectively. The cost of autotomy decreases 
prey growth rate through c and autotomy decreases the pre-
dation rate through r. The effect of autotomy on the predator 
is through the decreased kill probability rk and the benefit 
of eating the lost part f. For a full derivation and analysis of 
this model, see Appendix C.

For ease of notation, we define

and

(6)

dp�

dt
= �[kpN + [k + (f − K)(1 − rk)]pA]p� − �p�

dpA

dt
= �(1 − c)pA(1 − pA − pN) − �rkpAp�

dpN

dt
= �pN(1 − pA − pN) − �kpNp� ,

(7)k� = k + (f − K)(1 − rk).

(8)

�0 =
�

k�

n0 =
�

�k

n1 =
�

�k�
.

Table 3  Stability conditions for the equilibria of Eq. 4

Equilibrium Strategy Stability Conditions

(0, 0) �N V > K

(1, 0) �N V < K and c > K

(0, 1) �A Never stable
(1, 1) �A c < K and f > V

(x̂, ẑ) Mixed Never stable

Table 4  Parameters used in 
Fig. 4

Parameter A B C D E F G H

v 2 0.5 2 0.5 0.2 0.2 0.2 0.2
p 1 1 1 1 1 1 1 1
c 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.5
k 0.5 0.3 0.5 0.3 0.3 0.3 0.3 0.3
r 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
f 0.2 0.7 0.2 0.7 0.05 0.2 0.05 0.2



Theoretical Ecology 

1 3

There are five equilibria of this system, three of which are 
solvable without initial conditions: one with total extinction 
( p̂𝛼 = p̂A = p̂N = 0 ), one with coexistence and only autoto-
mizing prey:

one with coexistence and only non-autotomizing prey:

and two underdetermined equilibria where initial condi-
tions matter: an only-prey equilibrium with p� = 0 and 
pA + pN = 1 , and a coexistence between all three strategies 
that can only exist if 1 − c = r.

Figure 5 depicts the parameter regimes where each equi-
librium is stable. There are two qualitatively different situa-
tions that depend on f vs K; if f < K , then autotomy does not 

(9)
p̂𝛼 = 𝛽0

1 − c

r
(1 − n1)

p̂A = n1

p̂N = 0,

(10)

p̂𝛼 = 𝛽0(1 − n0)

p̂A = 0

p̂N = n0,

sufficiently benefit predators and so for coexistence to occur, 
the predator death rate must be lower than it would have to 
be in the absence of autotomy. On the other hand, if f > K , 
then autotomy provides sufficient benefit to the predators that 
coexistence can occur with a higher predator death rate than it 
would in the absence of autotomy. In this latter case, autotomy 
“rescues” predator–prey coexistence by allowing it to occur 
for situations where the predator would otherwise go extinct.

Some characteristics of this system do not depend on f, 
however. First, given a nonzero kill rate k, there is always 
a low enough predator death rate � such that coexistence 
occurs. Second, so long as autotomy is neither completely 
ineffective nor completely effective ( 0 < r < 1 ), there is 
always a low enough predator death rate such that coexist-
ence with autotomizing focal prey occurs.

Eco‑evolutionary dynamics

In the ecological model (Eq. 6), strategy frequencies of both 
predators and prey change due to the ecological dynamics 
alone. To combine evolution and ecology in this system, we 
turn our ecological system from one that focuses on changes 
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Fig. 4  Examples of phase portraits for the replicator dynamics 
(Eq. 4), where each curve represents a possible trajectory. (a) (0, 0) 
( � N) stable, frequency of approach quickly decreases, but frequency 
of autotomy transiently increases. (b) (0, 0) ( � N) and (1, 1) ( � A) sta-
ble. (c) (0, 0) ( � N) stable, monotonic decrease in both quantities. (d) 
(0, 0) ( � N) stable, frequency of autotomy quickly decreases, but fre-
quency of approach transiently increases. (e) Cycle. (f) (1,  1) ( � A) 
stable, frequency of approach quickly increases, but frequency of 
autotomy transiently decreases. (g) (1,  0) ( � N) stable, frequency of 

autotomy quickly decreases, but frequency of approach transiently 
decreases. (h) (1,  0) ( � N) stable, monotonic decrease in frequency 
of autotomy and monotonic increase in frequency of approach. Black 
dots are stable, gray dots are saddle points, and white dots are unsta-
ble. Panels A, B, E, and F correspond to the four panels under the 
c < K label (left and middle columns) in Fig. 2. Panels C and D are 
subcases of the c > K , V > K panel (top right) in Fig. 2. Panels G and 
H are subcases of the c > K , V < K panel (bottom right) in Fig.  2. 
Parameters used for this figure are listed in Table 4
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in strategy frequency to one that focuses on changes in pop-
ulation density and bring back as the evolutionary part a 
modified version of the replicator dynamics where payoffs 
are now dependent on population density as well as strategy 
frequency:

(11)

dP

dt
= P[[k + (f − K)(1 − rk)z][� − (1 − x)p]n + v(1 − x) − �]

dn

dt
= �(1 − cz)n(1 − n) − �k[1 − z(1 − r)]nxP

dx

dt
= x(1 − x)[np[k + (f − K)(1 − rk)z] − v]

dz

dt
= z(1 − z)[kxP(1 − r) − c],

where P = p� + p� and n = pA + pN . A derivation and an 
analysis of this model can be found in Appendix D.

The equation for dP
dt

 is not obvious and is constructed by 
noting that in our ecological model we have an equation for 
dp�

dt
=

d(xP)

dt
 , and we compute dP

dt
 from that using the chain rule 

(see Appendix D). This formulation enables us to put no particu- 
lar assumptions on the dynamics of the avoid strategy except for 
its evolutionary competition with the approach strategy.

There are eleven equilibria of this model and one non-
equilibrium long-term solution. All five equilibria that can 
be stable and their stability conditions are listed in Table 5, 
where for ease of notation we substitute

(12)�V = �k + p(1 − rk)(V − K).

Fig. 5  Long-term outcomes 
of the ecological dynamics 
(Eq. 6). When autotomy benefit 
is small ( f < K ), coexistence is 
more difficult when autotomy 
is favored (at low cost c com-
pared to effectiveness 1 − r ). 
When autotomy benefit is large 
( f > K ), coexistence is easier 
when autotomy is favored. 
Difficulty of coexistence here 
is measured by the minimum 
value of predator death rate � 
that allows for coexistence. k′ is 
defined in Eq. 7

Table 5  Descriptions and stability conditions for the five equilibria 
that can possibly be stable in the eco-evolutionary model (Eq.  11). 
The expressions for �0 , n0 , and n1 are in Eq. 8, and the expression for 

�V is Eq. 12. The expression for P̃ is Eq. 15. The expression for ñ is 
Eq. 16. The expression for z̃ is Eq. 56. Finally, c∗

0
 and c∗

1
 are defined in 

Eqs. 18 and 19, respectively

Description P̂ n̂ x̂ ẑ Stability Conditions

Prey-only, no approach 0 1 0 0 V > K and 𝜇 > 𝜇v

Prey-only, approach 0 1 1 0 V < K and 𝜇 > 𝜆k

Coexistence, no autotomy �0(1 − n0) n0 1 0 n0 < 1 , 𝜇 > 𝜆 v

p
 , c > c∗

0

Coexistence, autotomy �0(1 − n1)(
1−c

r
) n1 1 1 n1 < 1 , 𝜇 > 𝜆 v

p
 , and c < c∗

1

Coexistence, some autotomy P̃ ñ 1 z̃ ñ < 1 , 0 < z̃ < 1 , 𝜇 > 𝜆 v

p
 , c∗

0
> c , 

and c > c∗
1
.
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There are two potentially stable prey-only equilibria 
( ̂P = 0 , n̂ = 1 ) that are differentiated by their equilibrium 
approach frequency x̂ ; both have ẑ = 0 (as autotomy is unfa-
vored when there are no predators). The first has no predator 
approach ( ̂x = 0 ) and is stable only when alternative prey are 
valuable ( V > K ). The second has predator approach ( ̂x = 1 ) 
and is stable only when alternative prey are not valuable 
( V < K ). Both of these equilibria require the predator death 
rate to be relatively high, which makes sense because they 
are equilibria where the predators go extinct. The fact that 
we have a predator strategy frequency when we do not actu-
ally have any predators may seem a bit strange, but this result 
should be interpreted as a “ghost” of the transient dynamics 
leading to the approach toward the equilibrium. For instance, 
in the case where x̂ = 1 , the predators eventually go extinct, 
but, during that process, the approach strategy is favored 
because alternative prey are not valuable ( V < K).

The other possible long-term situation where there is no 
coexistence of predator and prey involves extinction of the 
prey population and runaway growth of the predator popu-
lation, where the predator population is focused entirely 
on alternative prey. The runaway growth is a side-effect of 
our minimal-assumption dynamics for the predators using 
the avoid strategy; had we imposed a carrying capacity on 
them or explicitly modeled the alternative prey, the predators 
would not grow without bound. Thus, it is best to consider 
this situation as the case where the avoid strategy wins, with 
the specific dynamics irrelevant to the scope of this model. 
Such runaway growth occurs if the predator death rate is low, 
and this particular threshold is higher (i.e., easier to obtain) 
if alternative prey are valuable ( V > K ; note the large swaths 
of space labeled “no approach” in Fig. 6 for V > K).

There are three coexistence equilibria. The first has:

and is the no-autotomy coexistence equilibrium.
Next, we have:

which is the autotomy coexistence equilibrium.
Finally, we have a coexistence equilibrium with an inter-

mediate frequency of autotomy:

(13)

P̂ = 𝛽0(1 − n0)

n̂ = n0

x̂ = 1

ẑ = 0,

(14)

P̂ = 𝛽0

(
1 − c

r

)
(1 − n1)

n̂ = n1

x̂ = 1

ẑ = 1,

and ẑ = z̃ is the positive real root of the following quadratic 
equation:

The full expression for z̃ can be found in Eq.  56 in  
Appendix D.

Stability conditions for these equilibria are shown in 
Table 5. The quantities c∗

0
 and c∗

1
 are

and are discussed in detail in Appendix D.
Figure 6 depicts the expected long-term outcomes of our 

eco-evolutionary model (Eq. 11). As with the ecological 
model (Eq. 6 and Fig. 5), predator–prey coexistence requires 
a sufficiently low predator death rate ( � ). However, in this 
case, if the predator death rate is too low, we reach the no-
approach runaway predator growth situation. As expected, 
autotomy is favored for high autotomy benefit (f) and low 
autotomy cost (c). There are also situations where both 
autotomy and no-autotomy coexistence equilibria are stable, 
as well as situations where other equilibria are stable at the 
same time as the autotomy coexistence equilibrium. Note 
that there are several other possibilities for the diagrams in 
Fig. 6, with different orderings of c∗

0
 and c∗

1
 (for V < K ) or 

different orderings of �V , �k′ , and � v

p
 (for K < V < f  ). These 

other possibilities merely trade regions of multistability for 
regions where only one equilibrium is stable. We chose the 
particular options displayed in Fig. 6 to best display the gen-
eral patterns without getting overwhelmed by detail.

The eco-evolutionary model provides two different effects 
on the existence of autotomy. First, it allows for a situation 
where autotomy is only present in part of the population, by 
contrast to the game-theoretical model, for which the mixed-
strategy equilibrium was never stable. Second, and more 
importantly, it allows for autotomy that was too costly for the 
game-theory model ( c > K ) to exist, given certain ecological 

(15)P̂ = P̃ = 𝛽0
1 − cz̃

1 − (1 − r)z̃
(1 − ñ)

(16)n̂ = ñ =
𝜇

𝜆[k + (f − K)(1 − rk)z̃]
,

(17)

0 = a2z̃
2 + a1z̃ + a0

a2 = c𝜆(𝛽0k − 1)(f − K)(1 − r)(1 − rk)

a1 = 𝛽0ck(1 − r)[𝜇 − k𝜆] + 𝜆[ck(1 − r)

− c(f − K)(1 − rk) + 𝛽0k(f − K)(1 − r)(1 − rk)]

a0 = 𝛽0(k𝜆 − 𝜇)(1 − r) + ck𝜆.

(18)c∗
0
= �0(1 − n0)k(1 − r)

(19)c∗
1
=

�0(1 − n1)k(1 − r)

�0(1 − n1)k(1 − r) + r
,
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parameters. In particular, we predict that costly autotomy is 
more likely to be present in prey with high growth rates or, 
perhaps non-intuitively, low predation rates. This conclusion 
arises from the fact that the cost-based stability condition for 
the autotomy coexistence equilibrium is

(20)

P̂ >
c

k(1 − r)

𝛽

𝛾k

(
1 − c

r

)[
1 −

𝜇

𝜆[k + (f − K)(1 − rk)]

]
>

c

k(1 − r)
,

and so a sufficiently large � or sufficiently small � will make 
this true. See Appendix D for details.

Comparison of model results

Our game-theoretical model outlined three “axes” that 
determine the predator–prey outcomes: cost of autotomy 
to the prey, benefit of autotomy to the predators, and the 
relative value of focal and alternative prey to the predators. 
Autotomy is favored when the prey cost is low, approach 

Fig. 6  Expected equilibrium outcomes for the eco-evolutionary 
dynamics (Eq. 11). As predator death rate ( � ) increases, the system 
moves from a no-approach runaway predator nonequilibrium dynamic 
to predator–prey coexistence equilibria to a prey-only equilibrium. 
Coexistence equilibria with autotomy occur for low autotomy cost 

(c) and high autotomy benefit (f). If alternative prey are highly valu-
able ( V > K ), coexistence is only possible for high autotomy benefit 
and low autotomy cost. The quantities k′ , c∗

0
 , c∗

1
 , and �V are defined in 

Eqs. 7, 18, 19, and 12, respectively
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is favored when focal prey are more valuable than alter-
native prey, and autotomy + approach is favored when 
in particular autotomizing prey are more valuable than 
alternative prey.

While the game-theoretical model assumed that there 
were always predators and prey that could have either strat-
egy, the ecological model approached the problem from a 
different angle: will there be predators or prey at all? In 
particular, under what circumstances can predators that 
approach the focal prey coexist with the prey? The ecologi-
cal model revealed first that, given a low enough predator 
death rate, coexistence (and therefore the approach strategy) 
can be guaranteed. Second, coexistence with autotomy is 
always possible so long as autotomy has intermediate effec-
tiveness. Finally, autotomy can “rescue” predator–prey coex-
istence by allowing predators with relatively higher death 
rates to exist; these results add a new element to the results 
obtained from the game-theoretical model: if the presence 
of autotomy can force the maintenance of the approach strat-
egy through ecology alone, then the game-theoretical model 
underestimates the evolutionary viability of autotomy.

Combining our game-theoretical and ecological models 
into our eco-evolutionary model resulted in dynamics that 
both parallel our purely game-theoretical results and incor-
porate the additional insights from the ecological model.

In our game-theoretical model, autotomy was only a 
stable outcome for relatively high predator benefit f; lower 
predator benefit could at best result in a cycle. The main 
effect of adding ecology to this model turns this cycle into a 
stable equilibrium with an intermediate frequency of autot-
omy, which is in general a more viable approach for long-
term maintenance of autotomy as it does not involve periods 
of extinction of the strategy. Otherwise, the predator benefit 
axis is unchanged.

The alternative prey benefit axis remains largely unchanged 
once ecology is added; autotomy is still viable mostly when 
alternative prey benefit V is low, and there is still the possibil-
ity of bistability when alternative prey benefit is high, but in 
the eco-evolutionary model, additional—relatively finicky— 
conditions related to ecological parameters and the initial 
conditions need to be met for this to be the case.

The biggest difference between the game-theoretical and 
eco-evolutionary models is the condition of the viability of 
autotomy from the prey-side, which was only possible for 
low cost ( c < K ) in the game-theoretical model. In the eco-
evolutionary model, this condition is replaced by one that 
also incorporates ecological parameters in such a way that 
given any cost c < 1 , we can freely choose a large enough 
prey growth rate � or small enough predation rate � to allow 
for autotomy to be favored. Prey that grow fast or have a low 
predation rate can accommodate the cost of autotomy to 
their population density to an extent that predators are still 

motivated to approach them, which then creates a situation 
where autotomy is favored.

Empirical application

We close with an application to porcelain crabs (Petrolisthes 
sp. and Pachycheles sp.), who lose their limbs to avoid pre-
dation (Wasson et al. 2002; Wasson and Lyon 2005; Knope 
and Larson 2014).

In an experiment involving challenging porcelain crabs 
of species Petrolisthes with predatory crabs, Wasson et al. 
(2002) found that the probability of killing a non-autoto-
mizing crab given predatory approach was k = 55

114
= 0.48 . 

Given autotomy, 58 out of 59 prey escaped, resulting in an 
effective kill rate of rk = 1

59
= 0.017 , so r = 0.017

0.48
= 0.035 . 

The value of K in this system is therefore 0.47. Multiple 
studies reviewed in Juanes and Smith (1995) found anywhere 
from c = 0.2 − 0.5 in crustaceans. Almost all of this range 
would satisfy c < K in this system, meaning that autotomy 
would be favorable for these crabs against predatory crabs.

In a different study that examined the stomach contents of 
four species of rockfish (Sebastes sp.) for both porcellanid 
crabs (Petrolisthes sp. and Pachycheles sp.) and brachyuran 
crabs (Cancer sp., Lophopanopeus sp., and Paraxanthias 
sp.), Knope and Larson (2014) found that out of 400 rockfish 
stomachs, there were 231 complete and 14 limb-only brachy-
uran samples and 22 complete and 12 limb-only porcellanid 
samples. Let us assume that a full skeleton is due to a failed 
escape by any prey, and a limb-only skeleton is due to a 
successful escape by autotomizing prey. For simplicity, let 
us also assume that the previously stated kill probability of 
k = 0.48 and autotomy efficacy of r = 0.035 are consistent 
across these crab species. We know that the total number of 
partial porcellanid skeletons PP and full porcellanid skel-
etons FP given the total number of approaches of porcel-
lanids TP must equal

so we can solve for zP , the autotomy frequency in porcellanid 
crabs, to be

We can use the same approach to find that the autotomy 
frequency in brachyuran crabs is zB = 0.029 , which is 
consistent with the idea that brachyuran crabs autotomize 
much less readily than do porcellanid crabs (Knope and 
Larson 2014).

(21)
PP = TP(zP)(1 − rk) = 12

FP = TPk(1 − (1 − r)zP) = 22,

(22)

FP

k(1 − (1 − r)zP)
=

PP

(1 − rk)zP

zP =
kPP

FP + kPP − rk(FP + PP)
= 0.21.
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We can then back-calculate the number of approaches of 
porcellanids as

We can use the same approach to find that the total num-
ber of approaches of brachyurans is TB = 491 , which means 
that x = TP

TB+TP
= 0.11 . Note that it is not necessary that each 

fish make only one approach, so having more approaches 
than fish is not a problem.

We can plug these results into the mixed-strategy equilib-
rium using x̂ = 0.11 (Eq. 2) and ẑ = 0.21 (Eq. 3), assuming 
f = 0.37 (estimated from Lawton (1989)), and obtain 
c = 0.051 and v

p
= 0.46 , indicating an extremely low cost to 

the crab for autotomy and that the brachyuran crabs are 
worth a bit under half as much to the predator as are the 
porcelain crabs. The low cost result is consistent with empir-
ical observations (Wasson et al 2002), and the relative worth 
result would require additional study to evaluate.

Discussion

We have derived and analyzed three separate models for the 
ecological and evolutionary dynamics of autotomy. First, we 
have studied a game-theoretical model where the prey can 
choose whether or not to employ autotomy and the predators 
can choose whether or not to pursue the prey. By studying 
the equilibria and the replicator dynamics of this system, we 
discovered three situations where autotomy is maintained in 
the population in the long term. First, if the predator is always 
motivated to approach the prey, then autotomy is favored as 
long as it provides some benefit to the prey. Second, if the 
predator is not motivated to approach non-autotomizing prey, 
but autotomy provides sufficient benefit to the predator, then 
the presence of autotomy encourages predators to approach 
when they would otherwise not do so. The prey can therefore 
“lock themselves” into performing autotomy. Finally, if the 
predator is motivated to approach non-autotomous prey, but 
autotomy does not provide sufficient benefit to the predator, 
and autotomy provides sufficient benefit to the prey, then the 
system will cycle through all possible strategy pairs.

Our second model is a purely ecological Lotka–Volterra 
model where the parameters are modified by terms that reflect 
the effects of autotomy on the predators and on the prey. Ignor-
ing extreme cases, there are always ecological parameters that 
allow predator–prey coexistence in general and coexistence 
with autotomy in particular, which suggests that ecological 
dynamics can facilitate the existence of autotomy. Autotomy 
can also “rescue” coexistence by allowing predators to exist 
when they would have gone extinct without autotomy.

(23)
PP = TP(zP)(1 − rk)

TP =
PP

zP(1 − rk)
= 58.

Our third model combines these first two models to pro-
duce eco-evolutionary dynamics of autotomy. This model 
has two major differences from either of the first two models 
alone. First, the cycle in the game-theoretical model is con-
verted into an equilibrium with an intermediate frequency 
of autotomy, rendering it easier for autotomy to be main-
tained at an intermediate level over long timescales. Sec-
ond, and more importantly, the cost of autotomy to the prey 
can in most circumstances be mitigated purely by ecologi-
cal parameters. In particular, we expect costly autotomy to 
more likely occur in predator–prey systems with high prey 
growth rates or low predation rates, i.e., systems where the 
prey population density remains sufficiently high in the face 
of a high autotomy cost that predators are still incentived to 
approach the prey.

In applying our theoretical results to empirical data from 
porcelain crabs, we expect that autotomy should be common 
in these crabs due to the low cost compared to the benefit 
of autotomy for the crabs themselves, and we predict that 
porcelain crabs are significantly more valuable to some of 
their predators than alternative prey are to those predators.

In general, we find that the effects of autotomy on the eco-
logical and evolutionary dynamics of predator–prey systems 
are highly variable, and that the ultimate outcomes depend 
very strongly on the specific parameter values of the system. 
Future work applying this model to empirical systems could 
involve measuring the values of these parameters and clas-
sifying existing autotomizing systems as likely or unlikely 
under our models, with the unlikely ones of particular inter-
est for future study.

A decades-old problem in the study of autotomy in lizards 
is the ability to distinguish between predation pressure (xP in 
our model), predator efficiency (k in our model), and escape 
efficiency ( 1 − r in our model) by looking at the prevalence 
of autotomy (Schoener 1979; Bateman and Fleming 2009). 
Models like ours that explicitly take into account all of 
these factors can help address these difficulties by allowing 
explicit predictions relating to all three factors.

In our game-theoretical model, the only time a purely 
distracting autotomy ( f = 0 ) can be maintained in the long 
term as a result of natural selection is as part of a cycle. In 
real systems, however, prey may be playing the autotomy 
game with multiple different sets of predators, and so if 
each of these games would individually fall into this cycling 
regime but are out of phase with one another, it would be 
possible for purely distracting autotomy to be maintained in 
the long term. Considering multiple games with the same 
prey and different predators would therefore be an useful 
extension of our model that would allow exploration of the 
multi-predator hypothesis (Blumstein 2006) in the context 
of autotomy.

Our eco-evolutionary model adds to a rich tradition 
of models that combine ecological and evolutionary 
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dynamics (Berryman  1992; Abrams  2000; Fussmann 
et al. 2007). Many of these models use a separation-of-
time-scales assumption (e.g., (Marrow et al 1996; Cor-
tez and Ellner 2010)), placing either the ecological or the 
evolutionary dynamics on a fast timescale and the other 
one on a slow timescale. One benefit of the simplicity 
of our eco-evolutionary model is the lack of need for 
this assumption. Of course, ecological and evolutionary 
dynamics can actually operate at different timescales, and 
it would be interesting to see how separation-of-timescales 
approaches yield different results from our approach.

Crucially, our model differs from previously studied mod-
els of antipredator behavior (e.g., (Ives and Dobson 1987; 
Lima 1998)) because, unlike strictly antipredator behaviors, 
autotomy has the possibility of conferring a benefit on the 
predator through ingestion of the lost part. It is this potential 
benefit that leads to the diverse evolutionary dynamics in our 
model. In fact, setting f = 0 would yield a general model of 
costly, strictly antipredator behavior.

Autotomy is known to increase prey vulnerability to 
subsequent predation (Maginnis 2006). Our model folds 
this effect into the effectiveness parameter r, which can 
be interpreted as an average across all population preda-
tion events for individuals that would choose to perform 
autotomy, whether or not they have actually done so prior 
to the predation event. One limitation of this method of 
parameterization is that cases where enough prey have per-
formed autotomy for there to be an effective kill rate post-
autotomy that is actually higher than the kill rate without 
autotomy require r > 1 , which we do not consider in our 
analysis. Incorporating the approaches of Harris (1989) and 
Wilkinson (2003) that explicitly track autotomized vs. intact 
individuals would be useful to study the effect of increased 
vulnerability in more detail. Tracking autotomized vs. intact 
individuals would also allow for the incorporation of preda-
tor learning into this model, whereby predators may be able 
to learn either to approach the prey in general (if autotomy 
happens with sufficient frequency and benefit to be worth-
while for the predator) or at the very least learn to approach 
autotomized individuals in particular. Predator learning 
in this sense could provide additional pressure to reach an 
approach-autotomy equilibrium, as predators are further 
incentivized to approach the autotomized prey and the prey 
are further incentivized to develop a useful, minimally costly 
autotomy mechanism.

Another of the choices we made in formulating our mod-
els was incurring a cost of autotomy c even without predator 
approach. There are two possible justifications for this. First, 
there may be some sort of metabolic cost to maintaining 
the whole system of autotomy and regeneration (“alloca-
tion costs” in Maginnis (2006)). This justification would 
apply under all interpretations of the autotomy strategy 
(A), including “individuals that have the potential to choose 

whether or not to autotomize in the presence of a preda-
tor.” Second, individuals who have autotomized incur well-
documented costs on their future survival and reproduction 
that do not relate to future predator escape (Maginnis 2006). 
This justification would apply under all interpretations of the 
autotomy strategy (A) in a population-average sense similar 
to that discussed above for r, but it would especially apply in 
a more explicit sense if the strategy is interpreted as “indi-
viduals must autotomize in a potential encounter even if the 
predator chooses to avoid the prey.” Our model is agnostic 
to these interpretations. Future models may consider making 
the cost of autotomy differ under varying levels of predation 
pressure.

Our models use the simplest possible biologically rel-
evant ecological dynamics framework (Berryman 1992): 
a Lotka–Volterra model with a prey carrying capacity and 
a linear predator functional response. We chose this sim-
ple structure to establish baseline results for our model of 
autotomy. Future extensions of this work could include more 
complex ecological models, including the use of a nonlinear 
predator functional response. In addition, future work could 
explore the evolution of the parameters of the autotomy 
game.

Appendix

A Game theory analysis

Let P(A|B) be the payoff of strategy A played against strat-
egy B. The approach strategy ( � ) beats the avoid strategy ( � ) 
against the autotomy strategy (A) when

and against the no autotomy strategy (N) when

with both of these calculations requiring rk < 1 . If rk = 1 
(that is, autotomy is completely ineffective and the kill is 
guaranteed), then both conditions collapse to p > v.

The autotomy strategy (A) beats the no autotomy strategy 
(N) against the approach strategy ( � ) when

(24)

P(𝛼|A) >P(𝜈|A)
rkp + (1 − rk)(fp) >v

f >

v

p
− rk

1 − rk
= V ,

(25)

P(𝛼|N) >P(𝜈|N)
kp >v

k >
v

p

k − rk

1 − rk
>

v

p
− rk

1 − rk

K >V ,
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When rk = 1 , this condition is impossible to satisfy.
The autotomy strategy can never beat the no autotomy 

strategy against the avoid strategy ( � ), as this would require

which is never true.

A Nash equilibrium is defined as a pair of states (A, B) 
such that no player benefits from switching states (Myer-
son 2013). In our case, this means that P(A|B) > P(C|B) and 
P(B|A) > P(D|A) , where C and D are the alternative strate-
gies to A and B, respectively. Combining the results from 
Eqs. 24–26, we obtain that � N is a Nash equilibrium when 
V > K , � A is never a Nash equilibrium, � N is a Nash equilib-
rium when V < K and c > K , and � A is a Nash equilibrium 
when f > V and c < K . There is no pure Nash equilibrium 
when f < V and V < K.

To compute a mixed strategy Nash equilibrium (x, z), 
where x is the frequency of playing � over � and z is the 
frequency of playing A over N, we must choose x to equalize 
the payoffs the prey gets from playing N or A:

This solution must be between 0 and 1, and it is always 
greater than 0 so long as c > 0 . We therefore only need

We must also choose z to equalize the payoffs the predator 
gets from playing � or �:

For z to be between 0 and 1, we require V − K and f − K 
to have the same sign and if that sign is positive, f > V  , 

(1 − rk)(1 − c) > 1 − k

c < 1 −
1 − k

1 − rk
=

1 − rk − 1 + k

1 − rk
=

k − rk

1 − rk
= K.

(26)1 − c > 1,

(27)

P(N|x) = P(A|x)
(1 − x)(1) + x(1 − k) = (1 − x)(1 − c) + x(1 − rk)(1 − c)

x =
c

k[1 − (1 − c)r]
.

(28)

c

k[1 − (1 − c)r]
<1

c <k[1 − (1 − c)r]

c <k − rk + crk

c(1 − rk) <k − rk

c <K.

(29)

P(�|z) = P(�|z)
v = (1 − z)kp + z[rkp + (1 − rk)fp]

z =
k −

v

p

k − kr − f (1 − rk)

z =
K − V

K − f
=

V − K

f − K
.

whereas if that sign is negative, f < V  . These conditions 
yield f > V > K or f < V < K.

B Replicator Dynamics

To obtain the replicator equations, we must compute mean 
fitnesses (payoffs) of the predators and prey. First, for the 
predator:

For the prey, we have:

Our system is two-dimensional, so we will use x and z as 
before to obtain the full replicator dynamics.

The equilibria are obtained by setting each equation to 0 
and solving for x and z. Setting dx

dt
= 0 yields x̂ = 0 , x̂ = 1 , or 

ẑ =
V−K

f−K
 . Setting dz

dt
= 0 yields ẑ = 0 , ẑ = 1 , or x̂ = c

k[1−(1−c)r]
 . 

The equilibria can be obtained by choosing one result from 
the first set and a result for the other variable from the second 
set.

To obtain the stability of these equilibria, we must com-
pute the Jacobian matrix of this system and calculate its 
eigenvalues, evaluated at each equilibrium. The equilibrium 
is stable if and only if all eigenvalues have negative real part 
(Guckenheimer and Holmes 1990).

The Jacobian matrix of this system is

(30)

Wpred(x, z) = (1 − x)P(�|x, z) + xP(�|x, z)
= (1 − x)v + x[kp(1 − z) + [rkp + (1 − rk)fp]z]

= v + x(kp − v) + xz[p[f (1 − rk) − (k − rk)]]

= v + x[p(1 − rk)(K − V)] + xz[p(1 − rk)(f − K)]

= v + p(1 − rk)[x(K − V) + xz(f − K)]

= v + xp(1 − rk)[K − V + z(f − K)].

(31)

Wprey(x, z) = (1 − z)P(N|x, z) + zP(A|x, z)
= (1 − x)(1 − z)(1) + (1 − x)z(1 − c) + x(1 − z)

(1 − k) + xz(1 − rk)(1 − c)

= 1 − cz − kx + xz(k − rk + crk)

= 1 − cz − kx + kxz[1 − r(1 − c)].

(32)

dx

dt
= x[P(�|x, z) −Wpred(x, z)]

= x[kp(1 − z) + [rkp + (1 − rk)fp]z −Wpred(x, z)]

= x(1 − x)[kp − v − zp[k − rk − f (1 − rk)]]

= x(1 − x)p(1 − rk)[z(f − K) + (K − V)]

dz

dt
= z[P(A|x, z) −Wprey(x, z)]

= z[(1 − rk)(1 − c)x + (1 − x)(1 − c) −Wprey(x, z)]

= z(1 − z)[kx[1 − (1 − c)r] − c].
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For (0, 0), the eigenvalues are −c and p(1 − rk)(K − V) , so 
(0, 0) is stable when V > K and a saddle point otherwise.

For (1, 0), the eigenvalues are k − rk − c(1 − rk) and 
p(1 − rk)(V − K) , so (1, 0) is stable when V < K and c > K , 
a saddle point when V < K and c < K or V > K and c > K , 
and unstable otherwise.

For (0, 1), the eigenvalues are c and p(1 − rk)(f − V) , 
so (0, 1) is a saddle point if f < V  or unstable otherwise.

For (1, 1), the eigenvalues are c(1 − rk) − (k − rk) and 
p(1 − rk)(V − f ) , so (1, 1) is stable when c < K and f > V  . 
If c > K and f > V  , or if c < K and f < V  , then (1, 1) is a 
saddle point, and if c > K and f < V  , then it is unstable.

For the interior equilibrium, it is easier to look at the trace 
and determinant instead of the eigenvalues. The trace is 0. 
The determinant is

Now, ẑ exists under either f > V > K or f < V < K . In 
the former case, the determinant is negative, and so we have 
a saddle point. In the latter case, the determinant is positive, 
so we have a center.

Our autotomy game is a specific example of a two-player, 
bimatrix game, the general analysis of which can be found 
in, e.g., Hofbauer and Sigmund (1998) and Cressman et al. 
(2003).

C Ecological Dynamics

Consider a standard Lotka–Volterra predator–prey model 
(Hofbauer and Sigmund 1998):

where P is predator population size, n is prey population size 

as a fraction of carrying capacity, � is the predation effect for 
the predator, � is predator death rate, � is prey growth rate, 
and � is predation effect for the prey.

First of all, we note that because there is no strategy-
switching through mutation in a purely ecological model, 
we treat each strategy as a separate population. Also, the 

� =

[
p(1 − rk)(1 − 2x)[z(f − K) + (K − V)] p(1 − rk)x(1 − x)(f − K)

z(1 − z)k[1 − (1 − c)r] (1 − 2z)[kx[1 − (1 − c)r] − c].

]

(33)
−pc(1 − rk)[k − rk − c(1 − rk)](f − V)(V − K)

k(f − K)[1 − (1 − c)r]
.

(34)

dP

dt
= �nP − �P

dn

dt
= �n(1 − n) − �nP,

avoiding predators are completely resource-partitioned 
with the approaching predators, and so there is no eco-
logical interaction between the two strategies. We can 
therefore ignore avoiding predators for now.

Tracking only approaching predators, autotomizing 
prey, and non-autotomizing prey as three separate popu-
lations results in the following system:

where for the predators we factor out the kill rate k from 
the growth rate � and then modify the effective kill 
rate for an interaction with an autotomizing predator 
( k + (f − K)(1 − rk) = rk + (1 − rk)f  ), where the contribu-
tion to the growth rate for a kill is 1 and for a failed kill is f. 
For the autotomizing prey, the growth rate is decreased by 
the autotomy cost c and the predation rate is decreased by 
the reduction in kill rate due to autotomy r.

S e t t i n g  dp�

dt
= 0  y i e l d s  p̂𝛼 = 0  o r 

𝜇 = 𝜆kp̂N + 𝜆[k + ( f − K)(1 − rk)]p̂A . Setting dpA
dt

= 0 yields 
p̂A = 0 or p̂𝛼 =

𝛽(1−c)(1−p̂A−p̂N )

𝛾rk
 . Setting dpN

dt
= 0 yields p̂N = 0 

or p̂𝛼 =
𝛽(1−p̂A−p̂N )

𝛾k
.

There are therefore five possible equilibria of this model: 
total extinction ( p̂𝛼 = p̂A = p̂N = 0 ), prey-only ( p̂𝛼 = 0 , 
p̂A + p̂N = 1 , and initial conditions matter), coexistence 
wi th  a l l -autotomy (  p̂𝛼 =

𝛽

𝛾k

1−c

r
[1 −

𝜇

𝜆[k+( f−K)(1−rk)]
] , 

p̂A =
𝜇

𝜆[k+( f−K)(1−rk)]
 , p̂N = 0 ), coexistence with no autotomy 

( p̂𝛼 =
𝛽

𝛾k
[1 −

𝜇

𝜆k
] , p̂A = 0 , p̂N =

𝜇

𝜆k
 ), and coexistence with 

some autotomy. This last equilibrium requires r = 1 − c , 
and that makes the latter two equations the same in Eq. 35 
w/r/t equilibria, so the system is underdetermined and initial 
conditions matter.

The Jacobian of this system is

The eigenvalues of the Jacobian at the total extinction 
equilibrium are −� , � , and �(1 − c) , so it is always a saddle 
point.

The eigenvalues of the no-autotomy coexistence equilib-
rium are

(35)

dp�

dt
= �[kpN + [k + (f − K)(1 − rk)]pA]p� − �p�

dpA

dt
= �(1 − c)pA(1 − pA − pN) − �rkpAp�

dpN

dt
= �pN(1 − pA − pN) − �kpNp� ,

⎡⎢⎢⎣

�[kpN + [k + (f − K)(1 − rk)]pA] − � �[k + (f − K)(1 − rk)]p� �kp�
−�rkpA �(1 − c)(1 − 2pA − pN) − �rkp� − �(1 − c)pA
−�kpN − �pN �(1 − pA − 2pN) − �kp� .

⎤⎥⎥⎦
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Note that this equilibrium exists only when 𝜇 < 𝜆k , so 
𝜆1 < 0 ⟺ c > 1 − r , and 𝜆2, 𝜆3 < 0 . Thus, this equilib-
rium is stable when it exists and c > 1 − r.

The eigenvalues of the autotomy coexistence equilib-
rium are

Note that this equilibrium exists only when 𝜇 < 𝜆

[rk + (1 − f )rk] = [ f + (1 − f )rk] , so 𝜆1 < 0 ⟺ c < 1 − r , 
and 𝜆2, 𝜆3 < 0 . Thus, this equilibrium is stable when it exists 
and c < 1 − r.

The eigenvalues of the Jacobian for a prey-only  
equilibrium (0, p̂A, 1 − p̂A) are −𝛽(1 − cp̂A) , 𝜆[k + p̂A
( f − K)(1 − rk)] − � , and 0.

If 𝜇 < 𝜆[k + p̂A( f − K)(1 − rk)] , then this equilibrium is 
unstable. If 𝜇 > 𝜆[k + p̂A( f − K)(1 − rk)] , then the leading 
eigenvalue of this equilibrium is 0, which indicates (in this 
case) null stability, as initial conditions matter. Note that 
this condition leaves the possibility for bistability between 
a coexistence equilibrium and a prey-only equilibrium for 
𝜆k′ < 𝜇 < 𝜆k when f < K  or 𝜆k < 𝜇 < 𝜆k′ when f > K  , 
depending on the equilibrium value of p̂A in the prey-only 
equilibrium. For simplicity, we leave this possibility out of 
Fig. 5.

D Eco‑evolutionary Dynamics

Incorporating the evolutionary dynamics into this model 
cannot entail merely importing Eq.  4 into Eq.  35, as 
that system assumes a constant population size for both 
predator and prey and is unable to incorporate density-
dependence as it is currently formulated, and it is this 
density-dependence that allows the ecological model 
to interact with the evolution of the system in the first 
place.

We first modify Eq. 4 by noting that from the prey 
perspective, we have modeled predator interaction at a 

(36)

�1 =
�

�k
(�k − �)(1 − c − r)

�2 =
−�� −

√
�2�2 − 4�k(�k − �)

2�k

�3 =
−�� +

√
�2�2 − 4�k(�k − �)

2�k

(37)

�1 =
�

�r[ f + (1 − f )rk]
[� − �[ f + (1 − f )rk]](1 − c − r)

�2 =
−��(1 − c) −

√
�2�2(1 − c)2 − 4�(1 − c)��[ f + (1 − f )rk][�[ f + (1 − f )rk] − �]

2�[ f (1 − rk) + rk]

�3 =
−��(1 − c) +

√
�2�2(1 − c)2 − 4�(1 − c)��[ f + (1 − f )rk][�[ f + (1 − f )rk] − �]

2�[f (1 − rk) + rk]

fixed rate, with differing outcomes based on the differ-
ent encountered predator strategies. Increasing the total 
number of predators present will increase the encounter 
rate, but the relative fraction of each predator strategy will 
still determine the evolution of the prey strategy. This is 
unsatisfying because of the change in perspective from 
our game-theoretic per-encounter model to our eco-evo-
lutionary continuous-time model. In particular, under a 
per-encounter model, a predator density of 0 would mean 
that autotomy would be neutral compared to no autotomy, 
because there are no interactions, where “Pa” refers to 
“payoff”:

and so P = 0 →
dz

dt
= 0.

A more biologically reasonable approach would be to 
note that costs of autotomy are often incurred over time 
rather than per-encounter (with examples including meta-
bolic costs of maintaining the autotomy/regeneration system 
and downstream effects of losing the body part and of regen-
eration that are not related to predator–prey encounters). 
Thus, we derive the equation for dz

dt
 in a slightly different way 

to accommodate this continuous-time perspective. Formally, 
if pN(t) is the number of non-autotomizing individuals over 
time and pA(t) is the number of autotomizing individuals 
over time with per-capita mortality rates �N and �A , so that 
in isolation pi(t) = pi(0)e

−�i t for i = N,A , then if z = pA

pA+pN
 , 

we have

(38)

Wprey(x, z, n,P) = (1 − z)Pa(N|x, z, n,P) + zPa(A|x, z, n,P)
= (1 − z)(1 − x)

P(1) + (1 − z)xP(1 − k) + z(1 − x)P(1 − c)

+ zxP(1 − rk)(1 − c)

= P[1 − cz − kx + kxz[1 − r(1 − c)]]

dz

dt
= z[Pa(A|x, z, n,P) −Wprey(x, z, n,P)]

= z[(1 − rk)(1 − c)xP + (1 − c)(1 − x)P

−Wprey(x, z, n,P)]

= z(1 − z)P[kx[1 − (1 − c)r] − c],

(39)
dz

dt
= z(1 − z)(�N − �A).
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We have to slightly depart from our game (Table 2) in 
order to accommodate costs accrued over time with preda-
tion still occurring per-encounter. Non-autotomizing prey 
still experience a mortality rate of k per encounter, so that 
the per-capita mortality rate over time is kxP. However, 
autotomizing prey now experience a mortality rate of rk 
per-encounter, with the effect of the fixed cost c applied 
over time, so that the per-capita mortality rate over time is 
rkxP + c . Plugging these results into Eq. 39 yields

Under this model, P = 0 would lead to a loss of autotomy, 
which makes biological sense.

For the predators, the effect of density is due to different 
pools of prey. Only the payoff of the approach strategy is 
affected by focal prey density. Incorporating prey density 
amounts to multiplying the per-interaction prey value p by 
the prey density n (where “Pa” refers to “payoff”):

To obtain the dynamics of the prey population, we note 
that n = pA + pN so dn

dt
=

dpA

dt
+

dpN

dt
 , so we add together the 

two equations from Eq. 6 into a single equation:

where the fraction of the population that performs autotomy 
( z = pA

pA+pN
 ) becomes a trait of the population.

Obtaining the dynamics of the predator population is a bit 
more involved because we only have ecological dynamics for 
the approaching predators, but we want to model the strategy 
distribution of the predators ( x = p�

p�+p�
=

p�

P
 ). We can start by 

(40)
dz

dt
= z(1 − z)[kxP(1 − r) − c].

(41)

Wpred(x, z, n,P) = (1 − x)Pa(�|x, z, n,P) + xPa(�|x, z, n,P)
= (1 − x)v + x[kp(1 − z)n

+ [rkp + (1 − rk)fp]zn]

= v + x[kpn − v] + xzpn(1 − rk)( f − K)

dx

dt
= x[Pa(�|x, z, n,P) −Wpred(x, z, n,P)]

= x[kp(1 − z)n + [rkp + (1 − rk)fp]zn

−Wpred(x, z, n,P)]

= x(1 − x)[np[ f (1 − rk)z + k[1

− (1 − r)z]] − v].

(42)
dn

dt
= �(1 − cz)n(1 − n) − �k[1 − z(1 − r)]np� ,

noting that p� = xP , and so our equation for dp�
dt

 in Eq. 6 is 
tracking the rate of change of the composite quantity xP over 
time. Because in the eco-evolutionary model, we are tracking 
the evolution of x separately, we must disentangle the rate of 
change of P from the rate of change of x:

Note that this transformation does not assume anything 
about the avoiding predator dynamics (except for their 
ecological distinctness from the approaching predators) 
and instead allows those dynamics to flow naturally from 
the interactions between their payoffs and the payoffs of 
the approaching predators.

Our full system of equations is therefore:

Setting dP
dt

= 0 yields P̂ = 0 , or n̂ =
𝜇−v(1−x̂)

[𝜆−(1−x̂)p][k+(f−K)(1−rk)ẑ]
 . 

Setting dn
dt

= 0 yields n̂ = 0 or P̂ =
𝛽

𝛾k

1−cẑ

1−(1−r)ẑ

1−n̂

x̂
 . Setting 

dx

dt
= 0 yields x̂ = 0 , x̂ = 1 , or ẑ =

v

n̂p
−k

( f−K)(1−rk)
 . Finally, setting 

dz

dt
= 0 yields ẑ = 0 , ẑ = 1 , or x̂P =

c

k(1−r)
.

The Jacobian matrix of this system is

Let us first dispense with the case where P̂ = n̂ = 0 . Eigenval-
ues of the Jacobian for these equilibria are shown in Table 6.

All equilibria with P̂ = n̂ = 0 are saddle points, and 
none are stable, which makes sense because under our prey 

(43)

d(xP)

dt
= x

dP

dt
+ P

dx

dt

dP

dt
=

1

x

[
d(xP)

dt
− P

dx

dt

]

=
1

x
[�[kpN + [rk + (1 − rk)f ]pA]xP − �xP

− P[x(1 − x)[np[k + (f − K)(1 − rk)z] − v]]]

= P[�n[k + ( f − K)(1 − rk)z] − � − [(1 − x)

[np[k + ( f − K)(1 − rk)z] − v]]]

= P[[k + ( f − K)(1 − rk)z][� − (1 − x)p]n

+ v(1 − x) − �].

(44)

dP

dt
= P[[k + ( f − K)(1 − rk)z][� − (1 − x)p]n + v(1 − x) − �]

dn

dt
= �(1 − cz)n(1 − n) − �k[1 − z(1 − r)]nxP

dx

dt
= x(1 − x)[np[k + ( f − K)(1 − rk)z] − v]

dz

dt
= z(1 − z)[kxP(1 − r) − c].

⎡⎢⎢⎢⎢⎣

k�
z
[� − (1 − x)p]n + v(1 − x) − � Pk�

z
[� − (1 − x)p] P[k�

z
pn − v] P[[(f − K)(1 − rk)][� − (1 − x)p]n]

−�k[1 − z(1 − r)]nx �(1 − cz)(1 − 2n) − �k[1 − z(1 − r)]xP − �k[1 − z(1 − r)]nP �(−c)n(1 − n) + �k(1 − r)nxP

0 x(1 − x)pk�
z

[npk�
z
− v](1 − 2x) x(1 − x)[np( f − K)(1 − rk)]

z(1 − z)kx(1 − r) 0 z(1 − z)kP(1 − r) [kxP(1 − r) − c](1 − 2z)

⎤
⎥⎥⎥⎥⎦
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dynamics the absence of predation means we should expect 
the prey to reach their carrying capacity.

The only other option for when P̂ = 0 is n̂ = 1 . Eigenval-
ues of the Jacobian for all equilibria with P̂ = 0 and n̂ = 1 
are shown in Table 7.

There is one other non-coexistence case, where P̂ > 0 but 
n̂ = 0 . It is actually more straightforward to analyze this situ-
ation from a less rigorous perspective. Setting n̂ = 0 yields 
a closed system of equations for P and x:

that can be solved as:

where x → 0 as t → ∞ and P → 0 if 𝜇 > v and P → ∞ if 
𝜇 < v . The latter case is the no-approach dynamic with runa-
way predator growth.

So the relevant equilibrium here is P̂ = 0 and x̂ = 0 , which 
we have already discussed above as a total-extinction equilib-
rium. Note that because in general n > 0 during this process, 
we cannot necessarily use 𝜇 < v as a condition for this situa-
tion as the effect of p is artificially eliminated by setting n to 0.

(45)

dP

dt
= P[v(1 − x) − �]

dx

dt
= − vx(1 − x).

(46)
P(t) = P0e

−�t[x0 + (1 − x0)e
vt]

x(t) =
x0

x0 + (1 − x0)e
vt
,

We can now study the coexistence equilibria where P̂ > 0 
and 0 < n̂ ≤ 1.

First, we note that x̂ = 0 → n̂ = 1 and ẑ = 0 or ẑ = 1 . Equi-
librium then requires 𝜇 − v = (𝜆 − p)[k + (f − K)(1 − rk)ẑ] , 
which is a boundary case with free choice of P̂ . So no equilib-
rium with x̂ = 0 exists that leads to coexistence.

Now, if x̂ = 1 and ẑ = 0 , we have as eigenvalues

The condition for 𝜆1 < 0 is

Because existence of this equilibrium requires 𝜇 < 𝜆k , 
𝜆3 < 0.

The other condition required for stability of this equi-
librium is 𝜆2 < 0 ⟺ 𝜇 > 𝜆 v

p
.

If x̂ = 1 and ẑ = 1 , we have as eigenvalues

(47)

𝜆1 = − c + P̂k(1 − r)

𝜆2 = v −
𝜇p

𝜆

𝜆3 =
−𝛽𝜇 +

√
(𝛽𝜇)2 − 4𝛽𝜇𝜆k(𝜆k − 𝜇)

2k𝜆

𝜆4 =
−𝛽𝜇 −

√
(𝛽𝜇)2 − 4𝛽𝜇𝜆k(𝜆k − 𝜇)

2k𝜆
< 0.

(48)

0 >𝜆1

c >P̂k(1 − r)

P̂ <
c

k(1 − r)
.

(49)

𝜆1 = c − P̂k(1 − r)

𝜆2 = v −
𝜇p

𝜆

𝜆3 =
−𝛽𝜇(1 − c) +

√
(𝛽𝜇(1 − c))2 − 4𝛽𝜇(1 − c)𝜆[k + (f − K)(1 − rk)][𝜆[k + (f − K)(1 − rk)] − 𝜇]

2𝜆[k + (f − K)(1 − rk)]

𝜆4 =
−𝛽𝜇(1 − c) −

√
(𝛽𝜇(1 − c))2 − 4𝛽𝜇(1 − c)𝜆[k + (f − K)(1 − rk)][𝜆[k + (f − K)(1 − rk)] − 𝜇]

2𝜆[k + (f − K)(1 − rk)]
< 0.

Table 6  Eigenvalues of the 
Jacobian for all equilibria with 
P̂ = n̂ = 0

P̂ n̂ x̂ ẑ �1 �2 �3 �4

0 0 0 0 � −c −v v − �

0 0 1 0 � −c v −�

0 0 0 1 �(1 − c) c −v v − �

0 0 1 1 �(1 − c) c v −�.

Table 7  Eigenvalues of the Jacobian for all equilibria with P̂ = 0 and n̂ = 1 . �V is defined in Eq. 12

P̂ n̂ x̂ ẑ �1 �2 �3 �4 Stability Conditions

0 1 0 0 −� −c kp − v v − � + k(� − p) V > K and 𝜇 > 𝜇V

0 1 1 0 −� −c v − kp k� − � V < K and 𝜇 > k𝜆

0 1 0 1 −�(1 − c) c p[k + (f − K)(1 − rk)] − v v − � + (� − p)[k + (f − K)(1 − rk)] Always saddle point
0 1 1 1 −�(1 − c) c v − p[k + (f − K)(1 − rk)] −� + �[k + (f − K)(1 − rk)] Always saddle point
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The condition for 𝜆1 < 0 is P̂ > c

k(1−r)
 . The condition for 

𝜆2 < 0 is 𝜇 > 𝜆 v

p
 . Because the existence condition for this 

equilibrium is 𝜇 < 𝜆[k + (f − K)(1 − rk)] , 𝜆3 < 0 always.
There are two critical values of c that are obtained from 

the cost-based conditions for the two previous coexistence 
equilibria. First, for the coexistence, no-autotomy equilibrium:

This condition is only possible if c∗
0
< 1 , which occurs iff

Note that c∗
0
≥ 0 is always true.

Second, for the coexistence, autotomy equilibrium:

If �0 = 0 , c∗
1
= 0 , and as �0 → ∞ , c∗

1
→ 1.

First of all, under what circumstances can we choose �0 
such that c < c∗

1
 (in which case ecological characteristics 

can overcome the cost of autotomy?) Rewriting the equa-
tion for c < c∗

1
 in terms of �0 yields

So we can always choose a �0 large enough that c < c∗
1
.

Next, under what circumstances can both these equilib-
ria coexist? We would need both conditions for �0 (Eqs. 51 
and 53) to be true, which requires

If f < K  , n1 > n0 , so we need c < 1 − r for bistability 
over a range of �0 . If f > K , n1 < n0 , so we can have bista-
bility for some values of c > 1 − r as well. Under circum-
stances where bistability is impossible, we would expect 
the following intermediate autotomy equilibrium to take 
over: x̂ = 1 but 0 < ẑ < 1 . In this case, setting dP

dt
= 0 yields 

n̂ =
𝜇

𝜆[k+( f−K)(1−rk)ẑ]
 . Setting dz

dt
= 0 yields P̂ =

c

k(1−r)
 . Setting 

dn

dt
= 0 yields P̂ =

𝛽

𝛾k

1−cẑ

1−(1−r)ẑ
[1 −

𝜇

𝜆[k+( f−K)(1−rk)ẑ]
] , which we 

can use to solve for ẑ.
Before we solve for ẑ , let us consider the function

(50)

P̂ <
c

k(1 − r)

𝛽0(1 − n0) <
c

k(1 − r)

c > k(1 − r)𝛽0(1 − n0) = c∗
0
.

(51)𝛽0 <
c

k(1 − r)(1 − n0)
.

(52)

P̂ >
c

k(1 − r)

𝛽0(1 − n1)
1 − c

r
>

c

k(1 − r)

c <
𝛽0(1 − n1)k(1 − r)

𝛽0(1 − n1)k(1 − r) + r
= c∗

1
.

(53)𝛽0 >
rc

k(1 − r)(1 − c)(1 − n1)
.

(54)
r

1 − c
<

1 − n1

1 − n0
.

noting that ẑ is the intersection of g(z) with the line 
z =

c

k(1−r)
= C.

Because the only singularity of g(z) is at z = 1

1−r
> 1 , 

g(z) is a continuous function over [0, 1]. The intermedi-
ate value theorem tells us that g(z) = C for some z over 
the interval [0, 1] if and only if either g(0) < C < g(1) 
or g(0) > C > g(1) . The first case implies that both other 
coexistence equilibria are unstable, if they exist, and the 
second case implies that both are stable, if they exist. In 
the first case, we should expect this intermediate equilib-
rium to be stable, and in the second case, we should expect 
this intermediate equilibrium to be unstable and separate 
the basins of attraction of the two stable equilibria. These 
conditions are equivalent to saying c∗

0
< c < c∗

1
 or c < c∗

0
 

and c > c∗
1
 , respectively.

Setting the two values of P̂ equal to each other leads to the 
quadratic equation in Eq. 17, the roots of which are

The value of z̃ is the positive one of the two roots that is also 
less than 1, provided such a root exists.

The eigenvalues of the Jacobian for this equilibrium are

and the roots of a cubic polynomial that is somewhat intrac-
table, and so we shall restrict our analysis of this equilibrium 
to numerical explanation, aside from the following condition 
for 𝜆1 < 0 : 𝜇 > 𝜆 v

p
.

Finally, substituting ẑ =
v

n̂p
−k

( f−K)(1−rk)
 (which is the case 

when 0 < x̂ < 1 ) into the expression for n̂ yields:

so this equilibrium is a boundary case that occurs in the 
transition between two stable equilibria.

Combining all of these stability conditions into a coherent 
picture requires some additional work. We start by 

(55)g(z) = �0
1 − cz

1 − (1 − r)z

(
1 −

�

�k�
z

)
,

(56)

z̃ =
−W ±

√
X

Y

W = − 𝛽0ck𝜇(1 − r) − 𝜆[𝛽0k(1 − r)[( f − K)(1 − rk) − ck]

+ c( f − K)(1 − rk)]

X = 𝛽0𝜆k( f − K)(1 − r)(1 − rk) + 2kY[c𝜆 + 𝛽0(𝜇 − k𝜆)

(1 − r)] + c(1 − rk)[𝛽0(𝜇 − k𝜆K)) − 𝜆f ]

Y = 2𝜆c( f − K)(1 − rk)(1 − r)(1 − 𝛽0k).

(57)�1 = v −
�p

�
,

(58)
n̂ = n̂

p[𝜇 − v(1 − x̂)]

v[𝜆 − p(1 − x̂)]

𝜇 = 𝜆
v

p
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considering the case where V < K . In this case, there are 
three quantities which are important: �k , �k′ , and � v

p
.

For f < V < K , we get 𝜆k′ < 𝜆 v

p
< 𝜆k . We also know that 

the coexistence with autotomy equilibrium requires 
𝜆 v

p
< 𝜇 < 𝜆k′ , which is impossible. The coexistence with no 

autotomy equilibrium requires 𝜆 v

p
< 𝜇 < 𝜆k , which is pos-

sible. Finally, the prey-only equilibrium requires 𝜇 > 𝜆k . So 
we can divide the � axis neatly into three sections for these 
two equilibria (with the intermediate-autotomy equilibrium 
taking over when the no-autotomy equilibrium is unstable) 
and then for the runaway no-approach situation for 𝜇 < 𝜆 v

p
.

For V < f < K , we get 𝜆 v

p
< 𝜆k′ < 𝜆k . It is now possible 

for both the autotomy and non-autotomy coexistence equi-
libria to be stable at the same time. If c∗

0
< c < c∗

1
 , we can 

have bistability of these two equilibria. If c∗
1
< c < c∗

0
 , the 

intermediate autotomy equilibrium is instead stable. The 
same situation applies for V < K < f .

Note that in both of these cases, it is important to incor-
porate the fact that c∗

0
 and c∗

1
 are both functions of � . First, we 

note that c∗
0
 is a strictly decreasing function of �:

and c∗
0
 at � = 0 is �0k(1 − r) , while at � = �k , c∗

0
= 0 . Thus, 

as � increases from 0 to �k , c∗
0
 decreases monotonically from 

�0k(1 − r) to 0.
Note that it is clear by inspection of (Eq. 19) that c∗

1
≥ 0 , 

that the only value of � such that c∗
1
= 0 is � = �k� , and that 

when � = 0 , c∗
1
=

�0k(1−r)

�0k(1−r)+r
.

The derivative of c∗
1
 with respect to � is

so as � increases from 0 to �k′ , c∗
1
 decreases monotonically 

from �0k(1−r)

�0k(1−r)+r
 to 0.

For the values of c∗
0
 and c∗

1
 to “cross” as � increases, we 

require either k′ < k (so f < K  ) and c∗
1
< c∗

0
 at � = 0 or 

f > K and c∗
1
> c∗

0
 at � = 0 . The former case is satisfied with 

f < K and 𝛽0 >
1

k
 . The latter case is satisfied with f > K and 

𝛽0 <
1

k
 . Thus, we can always choose �0 to force c∗

0
 and c∗

1
 to 

“cross” as � increases, which allows for both bistable and 
intermediate-autotomy regimes to be present. We represent 
this situation in Fig. 6 for V < f < K , but not for V < K < f  
to demonstrate the existence of both these possibilities.

For V > K , the prey-only equilibrium instead requires 
𝜇 > 𝜇V . If both f and K are less than V, then neither coexist-
ence equilibrium is stable at any point and � = �V transi-
tions between the prey-only equilibrium and the runaway 
no-approach situation.

(59)
d

d𝜇
c∗
0
= −

𝛽0(1 − r)

𝜆
< 0,

(60)
d

d𝜇
c∗
1
= −

𝛽0rk(1 − r)𝜆k�

(𝜆rk� − 𝛽0k(1 − r)(𝜇 − 𝜆k�))2
< 0,

If f > V > K , then the only possible coexistence equilib-
rium is the autotomy one, as 𝜆k′ > 𝜆 v

p
> 𝜆k . If 𝜇V > 𝜆 v

p
 , then 

there is a bistable regime between the coexistence equilib-
rium and the runaway situation (note that 0 ≤ c∗

1
≤ 1 always 

so there will always be a parameter regime where this is the 
case). If 𝜇V < 𝜆 v

p
 , then there is instead a bistable regime 

between the prey-only and runaway situations.
When V > K , the condition for 𝜇V > 𝜆 v

p
 is:

which is 𝜆 < p if V > K.
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