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Monophyletic groups—groups that consist of all of the descendants
of a most recent common ancestor—arise naturally as a conse-
quence of descent processes that result in meaningful distinctions
between organisms. Aspects of monophyly are therefore central to
fields that examine and use genealogical descent. In particular, stud-
ies in conservation genetics, phylogeography, population genetics,
species delimitation, and systematics can all make use of mathemat-
ical predictions under evolutionary models about features of mono-
phyly. One important calculation, the probability that a set of gene
lineages is monophyletic under a two-species neutral coalescent
model, has been used in many studies. Here, we extend this calcu-
lation for a species tree model that contains arbitrarily many species.
We study the effects of species tree topology and branch lengths on
the monophyly probability. These analyses reveal new behavior,
including the maintenance of nontrivial monophyly probabilities
for gene lineage samples that span multiple species and even for
lineages that do not derive from a monophyletic species group. We
illustrate the mathematical results using an example application to
data from maize and teosinte.
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Mathematical computations under coalescent models have
been central in developing a modern view of the descent of

gene lineages along the branches of species phylogenies. Since
early in the development of coalescent theory and phylogeography,
coalescent formulas and related simulations have contributed to a
probabilistic understanding of the shapes of multispecies gene trees
(1–3), enabling novel predictions about gene tree shapes under
evolutionary hypotheses (4, 5), new ways of testing hypotheses about
gene tree discordances (6, 7), and new algorithms for problems of
species tree inference (8, 9) and species delimitation (10, 11). A
“multispecies coalescent” model, in which coalescent processes on
separate species tree branches merge back in time as species reach a
common ancestor (12), has become a key tool for theoretical pre-
dictions, simulation design, and evaluation of inference methods,
and as a null model for data analysis.
A fundamental concept in genealogical studies is that of mono-

phyly. In a genealogy, a group that is monophyletic consists of all of
the descendants of its most recent common ancestor (MRCA):
every lineage in the group—and no lineage outside it—descends
from this ancestor. Backward in time, a monophyletic group has all
of its lineages coalesce with each other before any coalesces with a
lineage from outside the group.
The phylogenetic and phylogeographic importance of mono-

phyly traces to the fact that monophyly enables a natural defini-
tion of a genealogical unit. Such a unit can describe a distinctive
set of organisms that differs from other groups of organisms in
ways that are evolutionarily meaningful. Species can be delimited
by characters present in every member of a species and absent
outside the species, and that therefore can reflect monophyly (13,
14). In conservation biology, monophyly can be used as a priori-
tization criterion because groups with many monophyletic loci are
likely to possess unique evolutionary features (15). Reciprocal
monophyly, in which a set of lineages is divided into two groups
that are simultaneously monophyletic, is often used in a genea-
logical approach to species divergence (16, 17). The proportion of

loci that are reciprocally monophyletic is informative about the
time since species divergence and can assist in representing the
level of differentiation between groups (4, 18).
Many empirical investigations of genealogical phenomena have

made use of conceptual and statistical properties of monophyly
(19). Comparisons of observed monophyly levels to model pre-
dictions have been used to provide information about species di-
vergence times (20, 21). Model-based monophyly computations
have been used alongside DNA sequence differences between and
within proposed clades to argue for the existence of the clades
(22), and tests involving reciprocal monophyly have been used to
explain differing phylogeographic patterns across species (23).
Comparisons of observed levels of monophyly with the level
expected by chance alone (24) have assisted in establishing the
distinctiveness of taxonomic groups (25, 26). Loci that conflict
with expected monophyly levels have provided signatures of genic
roles in species divergences (27–29).
For lineages from two species under a model of population

divergence, Rosenberg (4) computed probabilities of four differ-
ent genealogical shapes: reciprocal monophyly of both species,
monophyly of only one of the species, monophyly of only the other
species, and monophyly of neither species. The computation
permitted arbitrary species divergence times and sample sizes—
generalizing earlier small-sample computations (1–3, 30, 31)—and
illustrated the transition from the species divergence, when mono-
phyly is unlikely for both species, to long after divergence, when
reciprocal monophyly becomes extremely likely. Between these ex-
tremes, the species can pass through a period during which mono-
phyly of one species but not the other is the most probable state.
Although this two-species computation has contributed to various

insights about empirical monophyly patterns (21–23, 32–34), many
scenarios deal with more than two species. Because multispecies
monophyly probability computations have been unavailable—
except in limited cases with up to four species (4, 35–38)—
multispecies studies have been forced to rely on two-species models,
restricting attention to species pairs (25, 34, 39) or pooling disparate
lineages and disregarding their taxonomic distinctiveness (23, 26).
Here, we derive an extension to the two-species monophyly

probability computation, examining arbitrarily many species re-
lated by an evolutionary tree. Furthermore, we eliminate the past
restriction (4) that the lineages whose monophyly is examined all
derive from the same population. This generalization is analo-
gous to the assumption that in computing the probability of a
binary evolutionary character (40–42), one or both character
states can appear in multiple species. Our approach uses a
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pruning algorithm, generalizing the two-species formula in a
conceptually similar manner to other recursive coalescent com-
putations on arbitrary trees (9, 40–44).
Like the work of Degnan and Salter (5), which considered

probability distributions for gene tree topologies under the
multispecies coalescent model, our work generalizes a coales-
cent computation known only for small trees (4, 35) to arbitrary
species trees. We study the dependence of the monophyly proba-
bility on the model parameters, providing an understanding of
factors that contribute to monophyly in species trees of arbi-
trary size. Finally, we explore the utility of monophyly prob-
abilities in an application to genomewide data from maize
and teosinte.

Results
Model and Notation.

Overview.Consider a rooted binary species tree T with ℓ leaves and
specified topology and branch lengths. For each of the ℓ species
represented by leaves of T , a number of sampled lineages is
specified. Given a specified partition of the lineages into two
subsets, we consider a condition describing whether one, the other,
both, or neither of the two subsets of lineages is monophyletic. Our
goal is to provide a recursive computation of the probability that
the condition is obtained under the multispecies coalescent model.
Notation appears in Table S1.
Lineage classes. The initial sampled lineages are partitioned into
class S (subset) for lineages within a chosen subset, and class C
(complement) for all lineages not included in S. Coalescence be-
tween an S lineage and a C lineage produces anM (mixed) lineage.
Any coalescence involving an M lineage also produces an M line-
age. Coalescences between two S or two C lineages produce S and
C lineages, respectively (Table 1).
Letting the number of S and C lineages present initially in the

ith leaf be Si and Ci, respectively, the model parameters are Si
and Ci for 1≤ i≤ ℓ, and the species tree T . For convenience, we
aggregate the Si and Ci with T into a parameter collection T SC
that we call the initialized species tree.
Monophyly events. A monophyly event Ei is an assignment of labels
to lineage classes S and C. We can choose to label a class “mono-
phyletic” or “not monophyletic,” or assign no label at all, so that
nine monophyly events are possible, six of which are relevant for our
purposes (Table 2). All lineages in a monophyletic class must coa-
lesce within the class to a single lineage before any coalesces outside
the class. If multiple classes are labeled monophyletic, then each class
must be separately monophyletic.
Species-merging events. We orient the species tree vertically, “up”
toward the root and “down” toward the leaves. From a coales-
cent backward-in-time perspective, at every internal node of the
species tree—representing a species-merging event—lineages
enter from two branches directly below the node. We label
one of these branches “left” and the other “right,” based on an

arbitrarily labeled diagram of species tree T . These labels are
used only for bookkeeping; the labeling does not affect subse-
quent calculations. Lineages entering from the left and right
branches are called “left inputs” and “right inputs,” respectively.
Each node x of T is associated with exactly one branch, leading
from node x to its immediate predecessor on T . We refer to this
branch with the shared label x.
For an internal branch x in T , the number of class-S left in-

puts is sLx (cLx for class C, mL
x for class M); the number of class-S

right inputs is sRx (cRx for class C, mR
x for class M). The total

number of class-S inputs of x is sIx = sLx + sRx (cIx = cLx + cRx for class
C, mI

x =mL
x +mR

x for class M). The number of lineages that exit
branch x, entering a branch farther up the species tree, is the set
of outputs of branch x: sOx , c

O
x , or m

O
x .

We combine the input and output values into two three-entry
vectors: the “input states” nI

x = ðsIx, cIx,mI
xÞ and the “output

states” nO
x = ðsOx , cOx ,mO

x Þ. Note that nI
x   =   nLx   +   nR

x . We refer to
the nodes directly below node x corresponding to its left and
right incoming branches by xL and xR, respectively, and to nodes
farther down the tree by sequences of Ls and Rs, which, read
from left to right, give the steps needed to reach them from x.
For example, xRL follows down from x to the right (xR), then
from xR to the left (xRL).
The time interval associated with node x is Tx, the length of

branch x. Branch lengths are measured in coalescent time
units of N generations, where N represents the haploid pop-
ulation size along the branch and is assumed to be constant.
Thus, larger population sizes correspond to shorter lengths of
time in coalescent units. Coalescences between inputs during
time Tx yield the outputs of x. The root branch of T has
infinite length.
The outputs of any nonroot branch are exactly the left or the

right inputs of another branch farther up the tree; the outputs of
the root are the outputs of the species tree. The root has only
one output lineage: nO

root = ð0,0,1Þ. Inputs of a node x are the
outputs of xL and xR, so that nL

x =nO
xL and nR

x =nO
xR. For conve-

nience, when node x corresponds to leaf i, we let sIx = sLx = Si and
cIx = cLx =Ci (Fig. 1).
We define T x

SC to be the initialized species subtree with root x
and Ex

i to be the monophyly event Ei for the subtree with root x,
ignoring the rest of the species tree.
Coalescence sequences. A coalescence sequence is a sequence of
coalescences that reduces a set of lineages to another set of
lineages. As an example, consider four lineages—labeled A, B,
C, and D—that coalesce to a single lineage. One sequence has A
and C coalesce first, followed by B and D, then the lineages
resulting from the AC and BD coalescences. This sequence
could be described as (A, C), (B, D), (AC, BD). If the first two
coalescences happened in opposite order, the sequence would be
(B, D), (A, C), (AC, BD).
Combinatorial functions. The probability gn,jðTÞ that n lineages co-
alesce to j lineages in time T is given by equation 6.1 of ref. 45.
It is nonzero only when n≥ j≥ 1 and T ≥ 0, except that we set
g0,0ðTÞ= 1.
Following equation 4 of ref. 4, the number of coales-

cence sequences that reduce n lineages to k lineages is
In,k = ½n!ðn− 1Þ!�= ½2n−kk!ðk− 1Þ!�. This function is nonzero only
when n≥ k≥ 1, with the convention I0,0 = 1.

Table 1. Lineage classes produced by coalescence events

Intraclass coalescences between pairs of lineages preserve the class;
interclass coalescences result in M lineages.

Table 2. Possible monophyly events for two disjoint lineage
classes, S and C

Monophyletic groups Description Notation

S Monophyly of S ES
C Monophyly of C EC
Only S Paraphyly of C ESC′
Only C Paraphyly of S ES′C
Both S and C Reciprocal monophyly ESC
Neither S nor C Polyphyly ES′C′
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Finally, the binomial coefficient W2ðr1, r2Þ  =  
�

r1   +   r2
r1

�
, by

equation 5 from ref. 4, gives the number of ways that separate
coalescence sequences consisting of r1 and r2 coalescences can be
ordered in a larger sequence containing them both as subse-
quences. W2ðr1, r2Þ is defined when r1, r2 ≥ 0.

The Central Recursion.
Overview. We develop a recursion for the probability of a par-
ticular output state nO

x and monophyly event Ex
i for a branch x

given the initialized species subtree T x
SC. We use the law of total

probability to write the desired probability as a sum over all
possible input states nI

x of the probability of the input state
multiplied by the conditional probability of the output given the
input. Keeping in mind that finputs  of   xg= foutputs  of   xLg∪
foutputs  of   xRg, we then use the independence of the outputs for
branches xL and xR to decompose the probability of the input
state of x into a product of the probabilities of the output states
of xL and xR. Schematically,

P
�
outputs  of   x,Ex

i

��T x
SC

�
=

X
possible

inputs  of   x

P
�
outputs  of   xL,ExL

i

��T xL
SC

�
 

3P
�
outputs  of   xR,ExR

i

��T xR
SC

�

×P
�
outputs  of   x,Ex

i

��inputs  of   x,T x
SC

�
.

[1]

The third term on the right-hand side of Eq. 1, which we repre-
sent by F, is the probability that the inputs coalesce to the spec-
ified outputs during time Tx in accord with the monophyly event.
We write the random variable for the output state of branch x as
Zx, labeling the particular values attained by the random variable
by nO

x . By formalizing Eq. 1, we can write the central recursion of
our analysis:

P
�
Zx =nO

x ,E
x
i

��T x
SC

�
=

X
�
SsubtxL

,Csubt
xL

, 1
�

nLx =0

X
�
SsubtxR

,Csubt
xR

, 1
�

nRx =0

P

�
ZxL =nO

xL ,E
xL
i

��T xL
SC

�

3P

�
ZxR =nO

xR ,E
xR
i

��T xR
SC

�
F
�
nO
x ,E

x
i

��nI
x,T

x
SC

�
.

[2]

In this equation, we denote the total number of inputs of class S
across all of the leaves subtended by xL or xR by SsubtxL or SsubtxR
(Csubt

xL or Csubt
xR for class C). Each of the two summations is a

nested triple sum, proceeding componentwise over the three
entries in the vectors nL

x and nR
x—e.g., for nL

x , we sum from
0 to SsubtxL , from 0 to Csubt

xL , and from 0 to 1. We now explain the
basis for this recursion.
Bounds of summation. The sums in Eq. 2 traverse all possible inputs
of branch x. We use summation bounds that only require in-
formation contained in the initialized species subtree T x

SC.
Numbers of inputs are nonnegative, and for each lineage class,
some branches have the possibility of having no inputs in the
class. Thus, all lower bounds are 0.
For the upper bounds, because coalescence does not create

new S and C lineages (Table 1), the numbers of S and C lineages
never exceed the numbers of S and C leaves in the gene tree,
respectively. Thus, for branch x, an upper bound for the possible
number of inputs of class S or C from one side (L or R) is SsubtxL or
SsubtxR for class S and Csubt

xL or Csubt
xR for class C.

We use Eq. 2 to calculate probabilities only for ES, EC, and ESC
(Table 2), using them to obtain probabilities for the remaining
events. These three events require complete intraclass co-
alescence separately in the appropriate classes before interclass
coalescences are possible. As a result, they permit exactly one
coalescence between an S lineage and a C lineage. Because the
leaves possess no M lineages and because only the unique co-
alescence between an S and a C lineage creates an M lineage
(Table 1), the number of M lineages never exceeds 1.
Probability of the outputs of a node given the inputs. Separating the
function F from Eq. 2 into a term for the probability that the
correct number of outputs is produced from the inputs and a
combinatorial term Ki for the probability that the coalescence

Fig. 1. Notation for computing monophyly probabilities above a species
tree node x. Nodes xLL, xLR, and xR are leaves. S lineages appear in blue, C
lineages in orange, and M lineages in green. The figure illustrates reciprocal
monophyly. Sequentially listing the numbers of S, C, and M lineages as a
vector, the outputs of branch x are nO

x = ð0,0,1Þ. Inputs are nL
x = ð1,1,0Þ and

nR
x = ð2,1,0Þ. Farther down the tree, branch xL has inputs nL

xL = ð1,0,0Þ and
nR
xL = ð0,1,0Þ. Adopting the convention that leaf inputs enter from the left,

branch xR has inputs nL
xR = ð4,1,0Þ and nR

xR = ð0,0,0Þ. Descending one more
level—which is only possible for xL—the inputs for branch xLL are nL

xLL = ð1,0,0Þ
and nR

xLL = ð0,0,0Þ, and for branch xLR, they are nL
xLR = ð0,2,0Þ and nR

xLR = ð0,0,0Þ.
Branch widths represent constant population sizes but do not indicate relative
magnitudes of these sizes.

Fig. 2. All cases required for computing combinatorial terms KS and KSC in
monophyly probabilities. (A–G) Cases for monophyly of S (Eq. 4). (H) A case
for reciprocal monophyly (Eq. 5). In each panel, lineages coalesce from
bottom to top, with the width of a shape corresponding to the number of
lineages present. A single lineage is represented by a line, and multiple
freely coalescing lineages are represented by shaded polygons with hori-
zontal cross-section proportional to the number of extant lineages. Lineages
represented in the same shape or in touching shapes can coalesce with each
other. Lineage colors follow Fig. 1.
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sequence generating those outputs occurs in accord with the
monophyly event Ei, F takes the form

F
�
nO
x ,E

x
i

��nI
x,T

x
SC

�
= gjnIxj,jnOx jðTxÞ  Ki

�
nO
x ,E

x
i

��nI
x,T

x
SC

�
, [3]

where
��nI

x

��= sIx + cIx +mI
x and

��nO
x

��= sOx + cOx +mO
x . For the case of

i= S, in which monophyly of S is of interest, we have:

Here, sTx records the total number of class-S lineages in the
species tree T at the species merging event corresponding to
node x. For cases 1 and 3, 0< c2 ≤ c1 and 0< s2 ≤ s1. For case 2,
0≤ c2 < c1, 0< c1, and 0< sTx . Note that it is not strictly neces-
sary for sIx = sTx in case 2 (violation of ES would be accommo-
dated elsewhere in the calculation, on another species tree
branch), but we retain this condition for clarity.
Function F (Eq. 3) describes the probability of an output state

and monophyly event given an input state and the initialized species
tree. Its g term records the probability that the correct number of
coalescences occur during the time Tx, defining a space of co-
alescence sequences from the input state to any output state with
the same number of lineages as the desired output. Ki (Eq. 4) re-
cords the fraction of those sequences that produce the correct
output and preserve the monophyly event Ei (in this case, ES).
The cases in Eq. 4 represent distinct scenarios for the types of

input and output lineages present (Fig. 2 A–G). In case 1 (Fig. 2
A–E), no coalescence violates ES, as all coalescences have types
ðS, SÞ (case 1e), ðC,CÞ (cases 1b, 1c, 1d), or ðC,MÞ (cases 1c, 1d).
No coalescences occur in case 1a. The correct output state is
guaranteed (KS = 1), as each coalescence decrements the number
of S (case 1e) or C lineages (cases 1b, 1c, 1d), and the only
change from input to output is a reduction in S or C lineages.
In cases 2 and 3, both S and C lineages are present, and we

enumerate the ways to obtain the desired output state from the input
state in accord with the monophyly event. To obtain KS, we divide by
the total number of coalescence sequences of correct length.
Case 2 describes the only possible way an S lineage and a C

lineage can coalesce with each other under ES (Fig. 2F). All extant
S lineages at the time of node x (sIx = sTx ) must coalesce to a single
lineage, and that lineage must coalesce with a C lineage when k
class-C lineages remain from the cIx = c1 extant C lineages present
in both species at node x. This coalescence results in a single M
lineage and k− 1 lineages of class C, which can coalesce in any
order to a single class-M lineage and cOx = c2 class-C lineages.
The number of ways that sTx lineages can coalesce to one

lineage is IsTx ,1. The number of ways that c1 lineages can coalesce
to k lineages is Ic1,k. These separate sequences of sTx − 1 and
c1 − k coalescences can be ordered in W2ðsTx − 1, c1 − kÞ ways.

The number of ways that a single S lineage can coalesce with one
of k lineages of class C is k. Finally, k lineages—one M lineage
and k− 1 class-C lineages—can coalesce to c2 + 1 lineages in
Ik,c2+1 ways. The desired number of coalescence sequences of
correct length that result in the correct output state without vio-
lating ES is obtained by summing the product of these terms over
possible values of k, which ranges from just enough C lineages
(c2 + 1) to allow the correct number of output lineages (c2)—the

resultant single S lineage coalesces with one C lineage and then no
other coalescence occurs—to the total number c1 of incoming C
lineages, when all of the S lineages coalesce before any of the C
lineages coalesce. The denominator of ratio KS is the total number of
ways of coalescing sTx +   c1 input lineages to c2 + 1 output lineages:
IsTx +c1,c2+1. Note that setting c2 = 0 in the ratio, reflecting a scenario
with only one output lineage, of class M, reduces the formula to the
two-species equation 11 from ref. 4 (Supporting Information).
Case 3 describes any situation with S and C lineages present

and no interclass coalescence (Fig. 2G). At node x, the sIx = s1
class-S lineages coalesce to sOx = s2 class-S lineages, and the
cIx = c1 class-C lineages to cOx = c2 class-C lineages. Group S has
not yet coalesced with the other sampled lineages and does not
do so within this species tree branch; its monophyly is not nec-
essarily determined on the branch. The number of ways s1 line-
ages can coalesce to s2 lineages is Is1,s2; c1 lineages can coalesce to
c2 lineages in Ic1,c2 ways. These sequences can be ordered in
W2ðs1 − s2, c1 − c2Þ ways. The numerator in the fraction of co-
alescence sequences of the correct length that result in the cor-
rect output state without violating ES is the product of these
three terms. The denominator is the total number of ways of
coalescing s1   +   c1 input lineages to s2   +   c2 outputs: Is1+c1,s2+c2.
Any pairing of an input state and an output state that does not

belong in cases 1–3 of Eq. 4 must violate ES. This violation yields
an output probability of KS = 0.
Reciprocal monophyly. Monophyly events ESC and ES differ in that
for ESC, unlike for ES, C and M lineages cannot coexist. Thus,
cases 1c and 1d of Eq. 4 move to “otherwise” for KSC, producing
KSC = 0 for the input states of those cases. Additionally, for ESC,
an interclass coalescence can occur only after all S lineages
have coalesced to a single S lineage and all C lineages have
coalesced to a single C lineage, whereas ES required only that
all S lineages coalesce. For ES, interclass coalescences occur
only in case 2 of Eq. 4; for ESC, we modify this case by requiring
first that before the interclass coalescence, the C lineages must
be all C lineages in the tree at the time of node x (as we did for
S lineages for case 2 of Eq. 4; cIx = cTx ). Second we require k= 1
and c2 = 0, so all C lineages coalesce to a single lineage before
the interclass coalescence. Setting k= 1, c2 = 0, substituting cTx

KS
�
nO
x ,E

x
S

��nI
x,T

x
SC

�
=

1

Case    1a:   nI
x = ð0,0,1Þ,nO

x = ð0,0,1Þ
Case    1b:   nI

x = ð0, c1, 0Þ,nOx = ð0, c2, 0Þ
Case    1c:   nI

x = ð0, c1, 1Þ,nO
x = ð0, c2, 1Þ

Case    1d:   nI
x = ð0, c1, 1Þ,nO

x = ð0,0,1Þ
Case    1e:   nI

x = ðs1, 0,0Þ,nO
x = ðs2, 0,0Þ

Pc1
k=c2+1

IsTx ,1Ic1,kW2
�
sTx − 1, c1 − k

�
kIk,c2+1

IsTx +c1,c2+1
Case    2:   nI

x =
�
sTx , c1, 0

�
,nO

x = ð0, c2, 1Þ

Is1,s2 Ic1,c2W2ðs1 − s2, c1 − c2Þ
Is1+c1,s2+c2

Case    3:   nI
x = ðs1, c1, 0Þ,nOx = ðs2, c2, 0Þ

0 otherwise

.

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

[4]
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for c1 in case 2 of Eq. 4, and noting that I1,1 = 1, we obtain case 2
for KSC (Fig. 2H), applicable when nI

x = ðsTx , cTx , 0Þ and
nO
x = ð0,0,1Þ:

KSC
�
nO
x ,E

x
SC

��nIx,T x
SC

�
=
IsTx ,1IcTx ,1W2

�
sTx − 1, cTx − 1

�
IsTx +cTx ,1

. [5]

For ESC, the input condition for case 2 can be satisfied only at the
root of T . For all input states other than those of Eq. 5 or cases
1c and 1d of Eq. 4, KSC =KS.
Completing the calculation. Having obtained a recursion that prop-
agates monophyly probabilities through a species tree, we apply
Eq. 2 at the root to complete the calculation of the probability of a
monophyly event on T SC:

PðEijT SCÞ=P
�
Zroot = ð0,0,1Þ,Eroot

i

��T root
SC

�
. [6]

Specifying each possible monophyly event Eroot
i in Eq. 6,

PðESjT SCÞ=P
�
Zroot = ð0,0,1Þ,Eroot

S

��T root
SC

�
[7]

PðECjT SCÞ=PðESjT CSÞ [8]

PðESCjT SCÞ=P
�
Zroot = ð0,0,1Þ,Eroot

SC

��T root
SC

�
[9]

PðESC′jT SCÞ=PðESjT SCÞ−PðESCjT SCÞ [10]

PðES′CjT SCÞ=PðECjT SCÞ−PðESCjT SCÞ [11]

PðES′C′jT SCÞ= 1−PðESC′jT SCÞ−PðES′CjT Þ−PðESCjT SCÞ,
[12]

where T CS is T SC with the labels S and C switched. These re-
cursive computations reduce to the known values for the two-
species case (Supporting Information).

Effect of Species Tree Height T. To illustrate the features of
monophyly probabilities, we now examine the effects on the
probabilities of model parameters. First, we vary the tree height
T and preserve relative branch length proportions, studying the
limiting cases of T = 0 and T→∞.
T = 0. At T = 0, nonroot species tree branches have length 0, so
the species tree is a single infinitely long branch—the root—with
initial sample sizes equal to the sums of the values at the leaves.
Formally, because gi,jð0Þ= 1 if i= j, every nonroot branch outputs
exactly its inputs. All s=

Pℓ
i=1Si class-S lineages and all c=Pℓ

i=1Ci class-C lineages enter the root. Using Eq. 7, and noting
that gi,1ð∞Þ= 1, we find that PðESjT SCÞ is a simple function of
the total numbers of S and C lineages:

f ðs, cÞ=
Pc

k=1Is,1Ic,kW2ðs− 1, c− kÞkIk,1
Is+c,1

=
2ðs+ cÞ

sðs+ 1Þ
�

s+ c

s

�, [13]

with the last equality from equation 11 in ref. 4. Function f
decreases with increasing s or c, as adding any lineage increases
the chance of a monophyly-violating interclass coalescence.
T→∞. As T→∞, because limT→∞ gi,jðTÞ= 1 when j= 1, every
branch exhibits complete coalescence. We define the minimal
subtree with respect to S, T p

SC, as the smallest subtree of the spe-
cies tree whose leaves contain all of the initial S lineages in the tree.
For large T, the monophyly probability depends on properties

of T p
SC. To be monophyletic, the S lineages must encounter C

lineages only above its root. If T p
SC contains no C lineages, then

complete coalescence in each branch implies monophyly of S
lineages, and the monophyly probability is 1. If T p

SC contains C
lineages and is at a leaf, k, then the limiting probability is

f ðSk,CkÞ. Complete coalescence in every branch makes this leaf
analogous to the root in the T = 0 case. Note that if Sk > 1 then
the limit f ðSk,CkÞ lies in the interior of the unit interval. This
result contrasts with ref. 4, where lineage classes correspond to
species tree leaves and the T→∞ probability of ES is 1. In our
scenario, because multiple lineage classes are permitted at a leaf,
a nonzero limit can be below 1.
If T p

SC contains C lineages but is not a leaf, however, then
complete coalescence in every branch implies that some proper
subset of S lineages must coalesce with C lineages before all of
the S lineages can coalesce with each other. In this case, the
limiting monophyly probability is 0.
Finite, nonzero T. The extreme cases assist in understanding the
behavior of the probability of ES for intermediate T. We enu-
merate the possible situations based on T p

SC, continuing to as-
sume that relative branch lengths are fixed and that a changing
tree height changes all branch lengths proportionally.
If T p

SC contains no C lineages, then decreasing the tree height
decreases the probability of monophyly by decreasing the time
during which S lineages are able to coalesce with only them-
selves, eventually approaching a minimum f ðs, cÞ achieved at
T = 0. Similarly, increasing T increases the monophyly probability
toward 1 as T→∞.
If T p

SC contains C lineages and is a leaf, then decreasing the
tree height decreases the monophyly probability by decreasing
the time before more C lineages are added to the population that
contains the S lineages. Shrinking the tree also increases the
expected number of additional C lineages introduced at species
merging events, further decreasing the monophyly probability.
The minimal probability of monophyly therefore occurs at T = 0.
Similarly, increasing the tree height increases the probability of
monophyly, approaching a maximal value as T→∞. Conse-
quently, in this case, like in the previous case, the probability also
increases monotonically in T.
If T p

SC contains C lineages and is not a leaf, then the minimal
probability of monophyly, approached as T→∞, is 0. As we will
see in numerical examples, however, monotonicity of the monophyly
probability with T is not guaranteed, and different initial sample sizes
on the same species tree can generate different behavior.

Effect of Relative Branch Lengths. Next, to investigate the behavior
of the monophyly probability as T increases, we devise a simple
three-species, two-parameter scenario, subdividing the tree height
T by a parameter r. We calculate the probability of ES for dif-
ferent sample-size conditions, varying r and T.
Fig. 3 shows the species tree and its resulting monophyly

probabilities for four representative initial conditions. For each
lineage class, S and C, the four cases place one or more lineage
pairs into the three species, using different placements across the
four cases. The cases include scenarios in which at least one
species contains both S and C lineages (B, D, E), in which one
(C) or both lineage classes spans multiple species (B, D, E), and
in which the species containing S lineages are not monophyletic
in the species tree (B, C).
The four cases (Fig. 3 B–E) illustrate differences in the pattern

of increase or decrease in the monophyly probability with
changes in r at fixed tree height T (Supporting Information). In
most cases with fixed r, the probability decreases to 0 with in-
creasing T, although in some boundary cases with r= 0 and r= 1
that change the case for the limiting behavior with T (see above
on T→∞), it approaches a positive value strictly within the unit
interval. These scenarios highlight the fact that depending on the
relative branch lengths and distribution of lineage classes across
species, the monophyly probability can be monotonically in-
creasing in T, monotonically decreasing, or not monotonic at all.

Effect of Pooling.Our next scenario simulates the difference between
separating and pooling distinct species when computing monophyly
probabilities, recalling that tests with more than two species have
until now required the pooling of multiple clades (23, 26).
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We consider four species trees with equal height and 12 lineages
(Fig. 4). Six class-C lineages appear in one species descended from
the root. The other six—the S lineage class—are evenly divided
between one, two, three, or six other leaves. If we interpret the
seven-leaf tree in Fig. 4D to be the “true” species tree, then the
other trees represent pooling schemes, the two-leaf tree (Fig. 4A)
being the only one possible to analyze using previous results.
Fig. 4 E–J displays the probabilities of all possible monophyly

events for each tree. For each event, pooling does not affect the
extreme cases T = 0 and T→∞. For intermediate T, the mono-
phyly probability for the S lineages decreases as pooling is re-
duced from the case in which the six class-S lineages are treated
as belonging to a single species to the case in which each lineage
is in its own species (Fig. 4E); the monophyly probability for C
remains largely unchanged (Fig. 4F). As pooling is reduced, the
probability of monophyly of only S and not C decreases (Fig.
4G), and that of only C and not S increases (Fig. 4H). The re-
ciprocal monophyly probability decreases (Fig. 4I) and the
probability of no monophyly increases (Fig. 4J).
In this scenario, the S and C lineages meet only at the species

tree root, and the monophyly probabilities are determined by the
numbers of lineages that reach the root. Coalescence is faster
with more nonisolated lineages; pooling species together results
in more coalescence events and fewer S lineages entering the
root, increasing the probability of monophyly of both S and C
lineages as well as the reciprocal monophyly probability (Fig. 4
E, F, and I). Decreasing the number of S lineages at the root
decreases the number of coalescences needed to produce ES
above the root, decreasing the chance of an interclass co-
alescence, whereas decreasing the number of S lineages does not
change the number of coalescences necessary to produce EC and
has a smaller effect on its probability (cf. Fig. 4 E and F). The
probability for ESC closely follows that of ES, as production of

reciprocal monophyly is limited by the monophyly of the
individual classes.
As can be seen from the increase in probability for ES as

pooling is increased (Fig. 4E), the correct monophyly probability
for clades that have been pooled tends to be lower than that
obtained under a model where the pooled clades are treated as a
single clade. The monophyly probability will likely be over-
estimated if populations are pooled.

Application to Data. To illustrate the empirical use of Eq. 7 and to
test if our theoretical results reasonably replicate patterns in real
data, we perform an analysis of monophyly frequencies using Zea
mays maize and teosinte genomic data (46).
Hufford et al. (47) analyzed 75 individuals from the data of

Chia et al. (46), considering four groups: teosinte varieties var.
parviglumis (“parviglumis”) and var. mexicana (“mexicana”) and
domesticated maize landraces (“landraces”) and improved lines
(“improved”). Modifying the estimated tree of individuals from
figure 1 in Hufford et al. (47) to make a model “species” tree the
leaves of which are the four groups (Fig. 5A), we compute the-
oretical monophyly probabilities for each of the groups via Eq. 7.
We also estimate the empirical frequency of monophyly for each
group by randomly sampling individuals from each group, con-
structing multiple gene trees per sample from SNP blocks, and
averaging frequencies of monophyly in the gene trees over the
random samples. This procedure employs 100 unique random
samples of eight individuals from the Hufford et al. subset, each
containing two individuals from each of the four groups. Finally,
we compare the observed and theoretical monophyly frequencies.
The monophyly frequencies appear in Fig. 5B and are sum-

marized in Table S2. The theoretical frequencies predict the
observations reasonably well. For each clade, especially parvi-
glumis and mexicana, the mean observed monophyly frequency

A B C D E

Fig. 3. The effect on monophyly probabilities of changing two branch lengths in relation to each other. (A) Model species tree. If the branch length co-
efficient r is 0, then the tree has a polytomy, and if r = 1, then the tree reduces to a two-species tree. (B–E) The probabilities of ES (Eq. 7) for monophyly of S
for the tree in A under different scenarios: (B) ðS1, S2, S3Þ= ð2,0,2Þ, ðC1,C2,C3Þ= ð2,2,2Þ. (C) ðS1, S2, S3Þ= ð2,0,2Þ, ðC1,C2,C3Þ= ð0,2,0Þ. (D) ðS1, S2, S3Þ= ð2,2,0Þ,
ðC1,C2,C3Þ= ð2,0,2Þ. (E) ðS1, S2, S3Þ= ð2,2,0Þ, ðC1,C2,C3Þ= ð2,2,2Þ.

A

C D H I J

B E F G

Fig. 4. The effect on monophyly probabilities of pooling lineages from separate species. (A–D) Model species trees. Labels record numbers of input lineages
(S in blue, C in orange). (E–J) Probabilities of monophyly events. The trajectories represent species trees with six class-S lineages evenly distributed over one
(A), two (B), three (C), and six (D) species. (E) ES (Eq. 7). (F) EC (Eq. 8). (G) ESC′ (Eq. 10). (H) ES′C (Eq. 11). (I) ESC (Eq. 9). (J) ES′C′ (Eq. 12).
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over 100 samples closely coincides with the theoretical mono-
phyly probability (Fig. 5B). Although the theoretical probability
is noticeably below the mean for the improved and landrace
clades and above the mean for parviglumis and mexicana, it lies
well inside the observed distributions.
Eq. 7 relies on a model with selectively neutral loci and con-

stant population size; a deviation from theoretical probabilities
could suggest a violation of one of the model assumptions. Do-
mestication imposes strong selection and population bottlenecks
(27, 48, 49), factors that violate our model in a manner that
would increase monophyly frequencies. Excess empirical mono-
phyly in the improved and landrace clades (Fig. 5B, Table S2) is
thus compatible with domestication in the history of these
domesticated groups.

Discussion
Extending a past computation (4) from 2 to n species, we have
obtained a general algorithm for the probability of any mono-
phyly event of two lineage classes in a species tree of any size. In
our generalization, unlike in previous calculations, no restriction
exists on the class labeling of lineages, so that monophyly
probabilities can be computed on samples aggregated across
multiple species. We have uncovered behaviors absent in the
two-species case, including nonmonotonicity of the monophyly
probability in the tree height and positive limiting probabilities
below 1. Both phenomena occur in scenarios newly possible to
include in monophyly calculations, in which the lineage set
whose monophyly is of interest spans multiple species, or in
which lineages of at least one species span both classes.
We have used a pruning algorithm similar to other species tree

computations (9, 40–44) that evaluate a quantity at a parent
node in terms of corresponding values for daughter nodes. In
previous applications of this idea, the states recorded at a node
are generally simpler than our input and output states. For ex-
ample, in evaluating the time to the MRCA (43), they are one-
dimensional; our approach instead tracks lineage classes as three

variables, accommodating complex transitions that occur at
interclass coalescences.
Previous work on monophyly probabilities has been limited to

small numbers of species (4, 35–38). This limitation has forced
investigators to either group multiple species together into a single
clade (23, 26)—a choice that our tree-pooling experiment shows
can overestimate monophyly probabilities—or to consider
pairwise comparisons when multispecies analyses would be
preferable (25, 34, 39). By identifying a bias that occurs when
pooling distinct species in monophyly probability computa-
tions, our experiment suggests that pooling should be avoided
when possible. Our results allow researchers to move beyond
such simplifications by performing monophyly calculations in
larger species groups.
One application of our results is to extend a test of a null

hypothesis that an observed monophyletic pattern is due to
chance alone (24). This test has been available only in situations
with species-specific lineages and two-species trees; it can now be
extended to arbitrary trees and non-species-specific lineages.
The results also provide a step toward computations for mono-
phyly events on three or more lineage groups considered jointly.
As an empirical demonstration, we analyzed data from maize

and teosinte, calculating theoretical and observed monophyly
frequencies in four groups. The empirical frequencies generally
match the predictions; frequencies exceeding predicted values in
the domesticated species may reflect the fact that domestication
bottlenecks and strong selection can violate our model in a
manner that increases the likelihood of monophyly.
We note that our Z. mays results should be viewed with

caution. We assumed a model of instantaneous divergence
events without incorporating the subsequent gene flow that
likely occurred in this system (47). Furthermore, our model
species tree contains uncertainty; however, we do not expect a
bias in any specific direction to have resulted from its construc-
tion. Perhaps more seriously, we generated the model tree from
the same study whose data we used for constructing gene trees.
However, considerations of monophyly were irrelevant in pro-
ducing the model tree, so that construction of the model did not
guarantee the agreement we obtained between theoretical and
observed monophyly.
The maize analysis illustrates how our framework can be used

to study monophyly in multispecies genomic data. The formulas
derived here allow for greater flexibility in studies of monophyly
and its relationship to species trees, contributing to a more
comprehensive toolkit for phylogeographic, systematic, and evolu-
tionary studies.

Materials and Methods
Maize Species Tree. We used maize HapMap V2 SNP data from www.panzea.
org/#!genotypes/cctl (46) consisting of 55 million SNPs and small indels from
103 Z. mays inbred lines. To construct Fig. 5A, we determined relative branch
lengths from figure 1 in Hufford et al. (47). We chose a tree height of
0.04, measured in units of N generations, where N is the haploid pop-
ulation size, noting that a ∼10,000-y domestication time (47) translates via
conversion factors calculated from figure 7 in ref. 50 (top panel, TD col-
umn) to 0.036 units of N generations. We chose our root as the root of the
Hufford et al. ingroup tree (second node from left in figure 1 of ref. 47,
call it x), our Parviglumis/Domesticated node as the MRCA of all domes-
ticated lineages and parviglumis lineages TIL01, TIL03, TIL11, and TIL14
(y = xLLLLL in figure 1 of ref. 47, oriented so that L is “down” rather than
“left”), and our Landrace/Improved node as the MRCA of all domesticated
lineages (yL in figure 1 of ref. 47).

Maize Samples. We chose 100 samples of four lineage pairs, selecting ran-
domly among 29 improved, 12 landrace, 8 parviglumis, and 2 mexicana in-
dividuals. We chose pairs within groups so that the Hufford et al. tree, a
genome-wide tree of individuals, restricted to each eight-lineage sample
would display the model species tree in Fig. 5A, irrespective of which lineage
in a pair was chosen to represent its group (Supporting Information).

Maize Gene Trees. The maize genome has ∼ 2.3× 109 bp (51), with linkage
disequilibrium (LD) decay at ∼1,500 bp (52). For simplicity and to

A

B

Fig. 5. Monophyly frequencies in maize and teosinte. (A) Model species
tree. (B) Violin-plot distributions across lineage subsamples of monophyly
frequencies for four clades. Means of the observed distributions (excluding
outliers for the improved and parviglumis clades) appear as circles and
theoretical values appear as triangles. Outliers appear for a single point at
frequency ∼0.43 in the improved clade and for several points at frequency
>0.17 in the parviglumis clade, with the cross indicating the mean of the
parviglumis outliers (Supporting Information).
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accommodate large quantities of missing data, despite genome-wide
variation in recombination rate and SNP density, we fixed a single block
size for analyses throughout the genome. With ∼ 5× 107 SNPs in the
dataset, SNP density per “LD block” is 32.6, which we round to 30. We
divided the SNPs into nonoverlapping 30-SNP blocks and used every
hundredth block in a concatenated genome starting from chromosome 1,
resulting in ∼6,000–7,000 gene trees per sample after removing blocks
monomorphic in the sample and gene trees polytomic for the sample.
We concatenated SNPs within blocks, computed blockwise Hamming dis-
tance matrices, and obtained gene trees using the hclust UPGMA (un-
weighted pair group method with arithmetic mean) clustering function in

the R stats package. SNPs with missing data for a lineage pair were ex-
cluded in distance calculations.

Software Implementation. The Monophyler software package implementing
Eqs. 7, 8, and 9 can be found at rosenberglab.stanford.edu/monophyler.html.
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